Dc-dc преобразователь своими руками. простая схема

dc-dc преобразователь своими руками. Простая схема

Устройствами с батарейным питанием сейчас уже никого не удивишь, всевозможных игрушек и гаджетов питающихся от аккумулятора или батарейки найдется с десяток в каждом доме. Между тем, мало кто задумывался над количеством разнообразных преобразователей, которые используются для получения необходимых напряжений или токов от стандартных батарей. Эти самые преобразователи делятся на несколько десятков различных групп, каждая со своими особенностями, однако в данный момент времени мы говорим про понижающие и повышающие преобразователи напряжения, которые чаще всего называются AC/DC и DC/DC преобразователями. В большинстве случаев для построения таких конвертеров используются специализированные микросхемы, позволяющие с минимальным количеством обвязки построить преобразователь определенной топологии, благо микросхем питания на рынке сейчас великое множество.

Рассматривать особенности применения данных микросхем можно бесконечно долго, особенно с учетом целой библиотеки даташитов и аппноутов от производителей, а также бесчисленного числа условно-рекламных обзоров от представителей конкурирующих фирм, каждая из которых старается представить свой продукт наиболее качественным и универсальным.

В этот раз мы будем использовать дискретные элементы, на которых соберем несколько простейших повышающих DC/DC преобразователей, служащих для того, чтобы запитать небольшое маломощное устройство, к примеру, светодиод, от 1 батарейки с напряжением 1,5 вольт.

Данные преобразователи напряжения можно смело считать проектом выходного дня и рекомендовать для сборки тем, кто делает свои первые шаги в удивительный мир электроники.

  • Итак, схема первая:
  • dc-dc преобразователь своими руками. Простая схемаСхема простого DC/DC
  • преобразователя №1

На данной схеме представлен релаксационный автогенератор, представляющий собой блокинг-генератор со встречным включением обмоток трансформатора.

Принцип работы данного преобразователя следующий: при включении , ток протекающий через одну из обмоток трансформатора и эмиттерный переход транзистора – открывает его, в результате чего он открывается и больший ток начинает течь через вторую обмотку трансформатора и открытый транзистор.

В результате в обмотке, подключенной к базе транзистора наводится ЭДС, запирающая транзистор и ток через него обрывается. В этот момент энергия, запасенная в магнитном поле трансформатора, в результате явления самоиндукции, высвобождается и через светодиод начинает протекать ток, заставляющий его светиться. Затем процесс повторяется.

dc-dc преобразователь своими руками. Простая схема

Компоненты, из которых можно собрать этот простой повышающий преобразователь напряжения, могут быть совершенно различными. Схема, собранная без ошибок, с огромной долей вероятности будет корректно работать.

Мы пробовали использовать даже транзистор МП37Б – преобразователь отлично функционирует! Самым сложным является изготовление трансформатора – его надо намотать сдвоенным проводом на ферритовом колечке, при этом количество витков не играет особой роли и находится в диапазоне от 15 до 30.

Меньше – не всегда работает, больше – не имеет смысла. Феррит — любой, брать N87 от Epcos не имеет особого смысла, также как и разыскивать M6000НН отечественного производства.

Токи в цепи протекают мизерные, поэтому размер колечка может быть очень небольшим, внешнего диаметра в 10 мм будет более чем достаточно. Резистор сопротивлением около 1 килоома (никакой разницы между резисторами номиналом в 750 Ом и 1,5 КОм обнаружено не было).

Транзистор желательно выбрать с минимальным напряжением насыщения, чем оно меньше – тем более разряженную батарейку можно использовать. Экспериментально были проверены: МП 37Б, BC337, 2N3904, MPSH10. Светодиод – любой имеющийся, с оговоркой, что мощный многокристальный будет светиться не в полную силу.

Собранное устройство выглядит следующим образом:

dc-dc преобразователь своими руками. Простая схема

Размер платы 15 х 30 мм, и может быть уменьшен до менее чем 1 квадратного сантиметра при использовании SMD-компонентов и достаточно маленького трансформатора. Без нагрузки данная схема не работает.

dc-dc преобразователь своими руками. Простая схемаdc-dc преобразователь своими руками. Простая схемаdc-dc преобразователь своими руками. Простая схема

Вторая схема — это типовой степ-ап преобразователь, выполненный на двух транзисторах. Плюсом данной схемы является то, что при её изготовлении не надо мотать трансформатор, а достаточно взять готовый дроссель, но она содержит больше деталей, чем предыдущая.

dc-dc преобразователь своими руками. Простая схемаСхема простого DC/DC преобразователя №2

Принцип работы сводится к тому, что ток через дроссель периодически прерывается транзистором VT2, а энергия самоиндукции направляется через диод в конденсатор C1 и отдается в нагрузку. Опять же, схема работоспособна с совершенно различными компонентами и номиналами элементов.

Транзистор VT1 может быть BC556 или BC327, а VT2 BC546 или BC337, диод VD1 – любой диод Шоттки, например, 1N5818. Конденсатор C1 – любого типа, емкостью от 1 до 33 мкФ, больше не имеет смысла, тем более, что можно и вовсе обойтись без него.

Резисторы – мощностью 0,125 или 0,25 Вт (хотя можно поставить и мощные проволочные, ватт эдак на 10, но это скорее расточительство чем необходимость) следующих номиналов: R1 — 750 Ом, R2 — 220 КОм, R3 – 100 КОм.

При этом, все номиналы резисторов могут быть совершенно свободно заменены на имеющие в наличии в пределах 10-15% от указанных, на работоспособности правильно собранной схемы это не сказывается, однако влияет на минимальное напряжение, при котором может работать наш преобразователь.

dc-dc преобразователь своими руками. Простая схемаСамая важная деталь — дроссель L1, его номинал также может отличаться от 100 до 470 мкГн (экспериментально проверены номиналы до 1 мГн – схема работает стабильно ), а ток на который он должен быть рассчитан не превышает 100 мА. Светодиод – любой, опять же с учетом того, что выходная мощность схемы весьма невелика.Правильно собранное устройство сразу же начинает работать и не нуждается в настройке.

Напряжение на выходе можно стабилизировать, установив стабилитрон необходимого номинала параллельно конденсатору C1, однако следует помнить, что при подключении потребителя напряжение может проседать и становиться недостаточным.

ВНИМАНИЕ! Без нагрузки данная схема может вырабатывать напряжение в десятки или даже сотни вольт! В случае использования без стабилизируещего элемента на выходе, конденсатор C1 окажется заряжен до максимального напряжения, что в случае последующего подключения нагрузки может привести к её выходу из строя!

  1. Преобразователь также выполнен на плате размером 30 х 15 мм, что позволяет прикрепить его на батарейный отсек типа размера AA. Разводка печатной платы выглядит следующим образом:
  2. dc-dc преобразователь своими руками. Простая схема
  3. Обе простые схемы повышающих преобразователей можно сделать своими руками и с успехом применять в походных условиях, например в фонаре или светильнике для освещения палатки, а также в различных электронных самоделках, для которых критично использование минимального количества элементов питания.

Источник: https://oao-sozvezdie.ru/6-stati/45-prostye_povyshayuchshie_preobrazovateli_dlya_batareynogo_pitaniya/

Мощный DC-DC преобразователь

dc-dc преобразователь своими руками. Простая схема

Сегодня рассмотрим очередной DC-DC преобразователь напряжения который позволит заряжать или питать ноутбук от автомобильной бортовой сети 12 вольт.  Схем похожих преобразователей в сети очень много, мы рассмотрим на мой взгляд один из лучших вариантов.  Ещё инверторы такого планы часто применяются для питания мощных светодиодов от пониженного источника поэтому некоторые образцы имеют функцию ограничения тока.

Зачем делать то, что можно купить, ещё и за несколько долларов, такие вопросы задают многие люди…, отвечу просто,  во-первых, собрать своими руками гораздо быстрее, чем ждать пару месяцев посылку из Китая и, во-вторых ничто не сравнится с той радостью, которую приносит работа конструкции которою ты создал собственными руками.  Плюс ко всему наша конструкция будет надёжная.dc-dc преобразователь своими руками. Простая схема

Давайте рассмотрим схему и принцип её работы.

dc-dc преобразователь своими руками. Простая схемаЭто однотактный, повышающий стабилизатор напряжения с защитой от коротких замыканий, в просто народи — Бустер. Принцип работы схож с обратно — ходовым преобразователем,dc-dc преобразователь своими руками. Простая схема но у последнего дроссель состоит минимум из двух обмоток и между ними имеется гальваническая развязка.

Основой схемы является популярнейший однотактный ШИМ-контроллер из семейства UC38, в данном случае это UC3843.dc-dc преобразователь своими руками. Простая схема  На вход схемы подаем напряжение, скажем 12 Вольт, а на выходе получаем 19, которые необходимо для зарядки почти любого ноутбука.dc-dc преобразователь своими руками. Простая схема

Вообще диапазон входных и выходных напряжений для этой схемы довольно широк, вращением подстроечного многооборотного резистора R8 с лёгкостью можно получить иные напряжения на выходе. Я выставил чуть меньше 18, так как данный преобразователь мне нужен для иных целей.

Микросхема генерирует прямоугольные импульсы с частотой около 120-125 килогерц,dc-dc преобразователь своими руками. Простая схема этот сигнал поступает на затвор ключа и тот срабатывает. Когда открыт транзистор в дросселе накапливается некоторая энергия, после закрытия ключа дроссель отдаёт накопленную энергию, это явление называют самоиндукцией, которая свойственна индуктивным нагрузкам.

Важно заметить, что напряжение самоиндукции может быть в разы, а то и в десятки раз больше напряжения питания, всё зависит от индуктивности конкретного дросселя.  На выходе схемы установлен однополупериодный выпрямитель dc-dc преобразователь своими руками. Простая схемадля выпрямления всплесков самоиндукции в постоянный ток , который накапливается в выходных конденсаторах.

  • Питание нагрузки осуществляется запасенной в конденсаторах энергией, такой инвертор очень экономичен благодаря ШИМ управлению, потребление холостого хода всего 15-20 миллиампер.dc-dc преобразователь своими руками. Простая схема
  • Используя осциллограф мы можем увидеть, как меняется скважность импульсов на затворе полевого транзистора в зависимости от выходной нагрузки, dc-dc преобразователь своими руками. Простая схемачем больше выходная мощность, тем больше длиться рабочий цикл транзистора, то есть в дроссель поступает больше энергии, а следовательно больше и энергия самоиндукции.
  • Теперь о конструкции…  Микросхема — ШИМ установлена на панельку для без паечного монтажа, если собираетесь использовать такой преобразователь в автомобиле, то советую микросхему запаять непосредственно на плату, так как в машине всегда есть вибрация.
Читайте также:  Светодиодная лампа своими руками, kit-набор

Полевой транзистор… Тут большой выбор, использовать можно ключи с током от 20 ампер напряжением не менее 50 вольт. Я просто воткнул мой любимый IRFZ44, которого с головой хватит.

Кстати о мощности…, В принципе схема может отдать 150 вт без проблем, но естественно для этого нужен более мощный транзистор скажем irf3205 и соответствующий дроссель, в моём варианте схема будет под нагрузкой не более 50 Ватт, хотя с таким раскладом компонентов 100 Ватт снять можно.

Далее по счёту идёт накопительный дроссель, его индуктивность 40 мкГн, ничего не мотал, просто взял один из дросселей выходного фильтра компьютерного блока питания. Диаметр провода 0,9 мм. Количество витков 25. В принципе он особо не критичен, индуктивность может отличаться, размеры кольца и количество витков тоже.

Выходной выпрямитель — это сдвоенный Диод шоттки, подойдут сборки с током от 10 ампер с обратным напряжением не менее 40-45 Вольт.

Схема имеет защиту от коротких замыканий, она построена на базе датчика тока в лице низкоомного резистора подключённого в цепь истока полевого ключа, в моём случае это 2-х ваттный резистор сопротивлением 0,1 Ом.

После окончательной сборки транзистор и выпрямитель устанавливают на общий теплоотвод не забываем и про изоляцию между ними. Печатная плата довольно компактная, монтаж плотный.

Печатную плату в формате lay. можно скачать здесь.

Автор; АКА Касьян.

Источник: https://xn--100—j4dau4ec0ao.xn--p1ai/moshhnyj-dc-dc-preobrazovatel-svoimi-rukami/

Простенький регулируемый DC-DC преобразователь, или лабораторный блок питания своими руками V2

  • Магазины Китая
  • GEARBEST.COM
  • Блоки питания
  • Зарядные устройства

dc-dc преобразователь своими руками. Простая схема Наверное многие помнят мою эпопею с самодельным лабораторным блоком питания. Но меня неоднократно спрашивали что нибудь похожее, только попроще и подешевле. В этом обзоре я решил показать альтернативный вариант простого регулируемого блока питания. Заходите, надеюсь, что будет интересно. Я долго откладывал этот обзор, то времени не было, что настроения, но вот дошли у меня руки и до него.

Данный блок питания имеет несколько другие характеристики чем предыдущий.

Основой блока питания будет плата DC-DC понижающего преобразователя с цифровым управлением. Но всему свое время, а сейчас собственно немного стандартных фотографий. Пришла платка в небольшой коробочке, ненамного больше пачки сигарет.dc-dc преобразователь своими руками. Простая схема Внутри, в двух пакетиках (пупырчатом и антистатическом) была собственно героиня данного обзора, плата преобразователя.dc-dc преобразователь своими руками. Простая схема Плата имеет довольно простую конструкцию, силовая часть и небольшая плата с процессором (данная плата похожа на плату из другого, менее мощного преобразователя), кнопками управления и индикатором.dc-dc преобразователь своими руками. Простая схема Характеристики данной платы Входное напряжение — 6-32 Вольта Выходное напряжение — 0-30 Вольт Выходной ток — 0-8 Ампер Минимальная дискретность установкиотображения напряжения — 0.01 Вольта Минимальная дискретность установкиотображения тока — 0.001 Ампера Так же данная плата умеет измерять емкость, которая отдана в нагрузку и мощность. Частота преобразования, указанная в инструкции — 150КГц, по даташиту контроллера — 300КГц, измеренная — около 270КГц, что заметно ближе к параметру указанному в даташите. На основной плате размещены силовые элементы, ШИМ контроллер, силовой диод и дроссель, конденсаторы фильтра (470мкФ х 50 Вольт), ШИМ контроллер питания логики и операционных усилителей, операционные усилители, токовый шунт, а так же входные и выходные клеммники.dc-dc преобразователь своими руками. Простая схема Сзади ничего практически и нет, только несколько силовых дорожек.dc-dc преобразователь своими руками. Простая схема На дополнительной плате установлен процессор, микросхемы логики, стабилизатор 3.3 Вольта для питания платы, индикатор и кнопки управления.

Процессор — 8s003f3p6

Логика — 2 штуки 74hc595d Стабилизатор питания — 1117-3.3 dc-dc преобразователь своими руками. Простая схема

На силовой плате установлены операционные усилители mcp6002i 2 штуки (такие же операционники стоит и в ZXY60xx)

ШИМ контроллер питания самой платы xl1509 adj dc-dc преобразователь своими руками. Простая схема

В качестве силового ШИМ контроллера выступает микросхема xl4012e1. По даташиту это 12 Ампер ШИМ контроллер, так что здесь он работает не в полную силу, что не может не радовать. Однако стоит учесть, что входное напряжение лучше не превышать, это так же может быть опасно.

В описании на плату указано максимальное входное напряжение 32 Вольта, предельное для контроллера — 35 Вольт. В более мощных преобразователях применяют слаботочный контроллер, управляющий мощным полевым транзистором, здесь все это делает один мощный ШИМ контроллер. Приношу извинения за фотографии, никак не получалось добиться хорошего качества.dc-dc преобразователь своими руками. Простая схема

Силовая диодная сборка mbr1060

dc-dc преобразователь своими руками. Простая схема При осмотре платы увидел восстановленную дорожку, не думаю, что это страшно. Но говорит о том, что изготовитель как минимум включает платы для проверки. При первом включении плата отображает установленное по умолчанию напряжение 5 Вольт. А так же ток, 1 Ампер. Эти установки можно изменять. Для этого в этом режиме надо выставить необходимый ток, нажать SET, на индикаторе отобразятся четыре прочерка, потом повторить операцию для напряжения. после включения плата будет запускаться с этими установками. Так же можно настроить автоматическое включение выхода и автоматический попеременный режим отображения токанапряжения. Выходное напряжение устанавливается довольно точно… С током картина несколько хуже, но не думаю, что это так критично. При повышении напряжения погрешность растет. А вот точность установки тока практически неизменна. В качестве проверки подключил автомобильную лампу, выставил 13.5 Вольт В описании платы сказано, что при токе нагрузки до 6 Ампер достаточно естественного охлаждения, при токах более 6 Ампер уже необходимо применять активное охлаждение. Я проверил нагрев при токе 6 Ампер и напряжении на нагрузке около 12 Вольт. После 20 минутного прогрева температуры были такие — ШИМ контроллер — 82 градуса. Выходная диодная сборка — 72 градуса Силовой дроссель — 60 градусов. В принципе, вполне верится в 6 Ампер с пассивным охлаждением, но плата тестировалась на столе, при установке в корпусе лучше применять либо активное охлаждение, либо ограничивать ток хотя бы на уровне 5 Ампер. Плавно мы перешли к практической части обзора 🙂

Собственно применение данной платы

На базе этой платы я решил сделать небольшой вспомогательный блок питания, а так же была мысль использовать его как зарядное устройство. Более мощный лабораторный блок питания у меня обычно стоит на столе и довольно часто используется. А так как процесс зарядки может занимать длительное время, то и было решено изготовить еще один, но попроще. Сначала я откопал дома плату от одного из компьютерных блоков питания, она уже успела послужить донором, но чудом избежала полной распайки. Видно, что части компонентов уже нет.

    Дальше берем в руки паяльник, выпаиваем все лишнее и впаиваем на место недостающее. На фото выпаяна часть компонентов, после того как было сделано фото, я выпаял еще некоторые детали, но это были уже мелочи. Описания переделки приводить не буду по двум причинам. 1. Описаний такой переделки в интернете очень много. 2. Блоки питания хоть и собраны в основном на похожей элементной базе, но могут иметь отличия, потому лучше разбираться с каждым в отдельности. А еще лучше просто купить БП на 24 или лучше 27 Вольт, соответствующей мощности и не заморачиваться с переделками. 🙂 После выпаивания ненужных компонентов я взял в руки маникюрные ножницы и отрезал кусок платы, предварительно очертив кусок, где нет используемых дорожек. Так же пришлось сходить на радиорынок и купить то, чего у меня дома не было. В общем блок питания я переделал. Переделка заключалась в удалении элементов, которые отвечают за работу узлов выдающих сигналы Power good, выпрямителей и фильтров 12, 5 и 3.3 Вольта, ну и тому подобных. Трансформатор перематывать было лень, потому к выходной диодной сборке добавились еще две, образуя диодный мост. Я добавил две сборки потому, что сборки с общим анодом у меня в наличии нет, и каждая сборка работает как просто одиночный диод. Настроил 27.5 Вольт на выходе, больше мне не надо было, да и БП и плата будут работать в безопасном режиме. Первая проверка после переделки. Так выглядит плата после всех моих манипуляций. Из своих домашних запасов выбрал подходящий корпус для будущего блока питания. Примерил всю начинку внутри, собственно теперь стало понятно, зачем я делал вырез в печатной плате блока питания. 🙂 Дальше пошел процесс установки всего этого в корпус. Прикинул как лучше и удобнее будет разместить элементы управления и индикации на передней панели и вырезал отверстия под светофильтр и кнопку. После этого немного обработал грани небольшим канцелярским ножом. Примерил как это будет выглядеть, под клеммники пришлось сделать отверстия немного овальными, так как на клеммниках есть выступы, защищающие от прокручивания. Начинает что-то вырисовываться. Разметил и просверлил отверстия под кнопки, светодиоды, установил плату управления. Спереди вроде красиво даже вышло 🙂 А вот сзади лучше не смотреть. Прошу не пугаться. Кнопки на плате преобразователя установлены слишком близко друг к другу, потому вырезал небольшой кусочек текстолита, прорезал ножовкой медь, просверлил отверстия под кнопки. После всех манипуляций приклеил все термоклеем. Так же пришлось вынести светодиоды за пределы светофильтра и немного изменить их расположение. Я сделал так же, как сделано у меня на основном блоке, что бы не путаться. Вот и все собрано в кучку. Сейчас, набирая текст, думаю, как то все быстро получается. Когда паял, сверлил, пилил, мне так не казалось. В процессе я допустил ошибку, ниже в х подсказали. Между диодным мостом и конденсатором фильтра должен быть дроссель, это важная часть БП. Дроссель можно использовать от старого БП, тот, который большой с кучей обмоток. Я смотал все обмотки кроме 12 Вольт. Сзади установлен разъем питания и вентилятор. На всякий случай я закрыл вентилятор решеткой. Вентилятор размером 50х15мм, довольно мощный, но очень шумный, надо будет допилить к нему термоконтроль, пока он запитан постоянно от КРЕН8В (15 Вольт, боялся, что будет мало). Осталось свинтить корпус и можно сказать, что все готово. В комплекте к корпусу даже были ножки и шурупы (это через лет 7 и переезд с одной квартиры на другую). Первое включение в уже полностью собранном состоянии, оно работает :))). Ну и небольшая проверка, напряжение 12 Вольт Ток более 7 Ампер. Остались косметические мелочи. Сделать регулировку оборотов вентилятор в зависимости от температуры. Оформить переднюю панель, а то хоть все и интуитивно понятно, но создает ощущение незавершенности. Описания на используемые компоненты, а так же инструкцию, я выложил в виде архива. В инструкции, найденной мною в интернете, описан вход в сервисный режим, где можно изменить некоторые параметры. Для входа в сервисный режим надо подать питания при нажатой кнопке ОК, на экране будут последовательно переключаться цифры 0-2, что бы переключить настройку, надо отпустить кнопку во время отображения соответствующей цифры. 0 — Включение автоматической подачи напряжения на выход при подаче питания на плату. 1 — Включение расширенного режима, отображающего не только ток и напряжение, а и емкость, отданную в нагрузку и выходную мощность. 2 — Автоматический перебор отображения измерений на экране или ручной. Так же в инструкции есть и пример запоминания настроек, так как у платы можно настроить лимит по установке тока и напряжения и есть память установок, но в эти дебри я уже не лез. Так же я не трогал контактны для разъема UART, находящиеся на плате, так как даже если там что-то и есть, то программы для этой платы я все равно не нашел. Резюме.

    Читайте также:  Переносной раскладной стул своими руками

    Плюсы.

    1. Довольно богатые возможности — установка и измерение тока и напряжения, измерение емкости и мощности, а так же наличие режима автоматической подачи напряжения на выход. 2. Диапазон выходного напряжения и тока вполне достаточен для большинства любительских применений. 3. Качество изготовления не то что бы хорошее, но без явных огрехов. 4. Компоненты установлены с запасом, ШИМ на 12 Ампер при 8 заявленных, конденсаторы на 50 Вольт по входу и выходу, при заявленных 32 Вольта.

    Минусы

    1. Очень неудобно сделан экран, он может отображать только 1 параметр, например — 0.000 — Ток 00.00 — Напряжение Р00.0 — Мощность С00.0 — Емкость. В случае последних двух параметров точка плавающая. 2. Исходя из первого пункта, довольно неудобное управление, валкодер бы очень не помешал. Мое мнение. Вполне достойная плата для построения простенького регулируемого блока питания, но блок питания лучше и проще использовать какой нибудь готовый. Данная плата, для тестирования и обзора, была мне бесплатно предоставлена магазином gearbest. Это мой пятидесятый обзор, почти юбилейный (когда только столько набралось), надеюсь, что он будет полезен и интересен, пишите в х свои вопросы, попробую ответить.

    Купон на скидку

    По моей просьбе магазин предоставил купон на скидку, с ним цена на плату будет 20.93, купон — B3008DH Разница конечно маленькая, но хоть что-то.

    Вместо котика

    Я давно не выкладывал разные интересные рекламы. Это не реклама инструмента, но она мне просто нравится и даже немного подходит под тему обзора.

    Планирую купить +164 Добавить в избранное Обзор понравился +123 +268

    Источник: https://mysku.ru/blog/china-stores/28494.html

    Схема dc-dc преобразователя

    На главную страницу

       Это DC-DC преобразователь напряжения с 5-13 В на входе, до 12 В выходного постоянного тока 1,5 А. Преобразователь получает меньшее напряжение и дает более высокое на  выходе, чтобы использовать там где есть напряжение меньшее требуемых 12 вольт. Часто он используется для увеличения напряжения имеющихся батареек. Это по сути интегральный DC-DC конвертер. Для примера: есть литий-ионный аккумулятор 3,7 В, и его напряжение с помощью данной схемы можно изменить, чтобы обеспечить необходимые 12 В на 1,5 А.

    Схема DC-DC преобразователя на MC34063A

    dc-dc преобразователь своими руками. Простая схема    Преобразователь легко построить самостоятельно. Основным компонентом является микросхема MC34063, которая состоит из источника опорного напряжения (температурно-компенсированного), компаратора, генератора с активным контуром ограничения пикового тока, вентиля (элемент «И»), триггера и мощного выходного ключа с драйвером и требуется только несколько дополнительных электронных компонентов в обвязку для того чтобы он был готов. Эта серия микросхем была специально разработана, чтобы включены их в состав различных преобразователей. dc-dc преобразователь своими руками. Простая схема

    Достоинства микросхемы MC34063A 

    • Работа от 3 до 40 В входа
    • Низкий ток в режиме ожидания
    • Ограничение тока
    • Выходной ток до 1,5 A
    • Выходное напряжение регулируемое
    • Работа в диапазоне частот до 100 кГц
    • Точность 2%

    dc-dc преобразователь своими руками. Простая схема

    Описание радиоэлементов

    • R — Все резисторы 0,25 Вт.
    • T — TIP31-NPN силовой транзистор. Весь выходной ток проходит через него.
    • L1 — 100 мкГн ферритовые катушки. Если придётся делать самостоятельно, нужно  приобрести тороидальные ферритовые кольца наружным диаметром  20 мм и внутренним диаметром 10 мм, тоже 10 мм высотой и проволоку 1 — 1,5 мм толщиной на 0,5 метра, и сделать 5 витков на равных расстояниях. Размеры ферритового кольца не слишком критичны. Разница в несколько (1-3 мм) приемлема. 
    • D — диод Шоттки должен быть использован обязательно
    • TR — многовитковый переменный резистор, который используется здесь для точной настройки выходного напряжения 12 В. 
    • C — C1 и C3 полярные конденсаторы, поэтому обратите внимание на это при размещении их на печатной плате.

    dc-dc преобразователь своими руками. Простая схема   dc-dc преобразователь своими руками. Простая схема

    Список деталей для сборки

    1. Резисторы: R1 = 0.22 ом x1, R2 = 180 ом x1, R3 = 1,5 K x1, R4 = 12K x1
    2. Регулятор: TR1 = 1 кОм, многооборотный 
    3. Транзистор: T1 = TIP31A или TIP31C
    4. Дроссель: L1 = 100 мкГн на ферритовом кольце
    5. Диод: D1 — шоттки 1N5821 (21V — 3A), 1N5822 (28V — 3A) или MBR340 (40В — 3A) 
    6. Конденсаторы: C1 = 100 мкФ / 25V, C2 = 0.001 мкФ , C3 = 2200 мкФ / 25V
    7. Микросхема: MC34063 
    8. Печатная плата 55 x 40 мм  

    dc-dc преобразователь своими руками. Простая схема

       Заметим, что необходимо установить небольшой алюминиевый радиатор на транзистор T1 — TIP31, в противном случае этот транзистор может быть поврежден из-за повышенного нагрева, особенно на больших токах нагрузки. Даташит и рисунок печатной платы прилагается.    Схемы блоков питания

    Порядок вывода комментариев: По умолчанию Сначала новые Сначала старые dc-dc преобразователь своими руками. Простая схема 1
    Дмитрий   (22.02.2016 17:47)
    а такая микросхема подойдет mc34063ag

    2
    MAESTRO   (22.02.2016 17:59)

    Да, пойдёт.

    3
    Дмитрий   (23.02.2016 15:22)

    резистор на 0.22 ом,можно заменить на какой нибудь другой? если да то на какой?

    4
    MAESTRO   (23.02.2016 15:43)

    Можно из нескольких по 1 Ому паралллельно составить его.

    5
    Дмитрий   (25.03.2016 07:53)

    Прошу помощи или совета: собрал микросхему все работает,выдает 12в, подключаю лампочку на 12в горит, замечательно! Но как только я подсоединяю усилитель НЧ С РАБОЧИМ НАПРЯЖЕНИЕМ 6-18в (ток потребления 60-150 mA )начинает что то пищать, ну пусть бы пищало, только этот писк передается в динамики.да и еще заметил если прибавить звука побольше писк пропадает и в динамиках и в схеме. Не подскажешь в чем может быть проблема или может посоветуешь что нибудь?

    6
    воин2010   (07.04.2016 17:38)
    либо конденсатор плохой , либо нужно повысить рассеивающую мощность резисторов , начни с кондюков , их всего 3 , легче и быстрей проверишь. 7
    воин2010   (10.04.2016 16:00)
    вопросик ,собрал схему но выдаёт макс 1.7 вольт , где совершил ошибку подскажите

    • Снижение расхода топлива в авто
    • dc-dc преобразователь своими руками. Простая схема
    • Ремонт зарядного 6-12 В
    • dc-dc преобразователь своими руками. Простая схема
    • Солнечная министанция
    • dc-dc преобразователь своими руками. Простая схема
    • Самодельный ламповый
    • Фонарики Police
    • Генератор ВЧ и НЧ
      © 2009-2020, «Электронные схемы самодельных устройств». Электросхемы для самостоятельной сборки радиоэлектронных приборов и конструкций. Полезная информация для начинающих радиолюбителей и профессионалов. Все права защищены.
    • Вход
    • Почта
    • Мобильная версия

    Источник: https://elwo.ru/publ/skhemy_blokov_pitanija/skhema_dc_dc_preobrazovatelja/7-1-0-779

    Повышающий DC-DC преобразователь на MC34063 (из 5В в 12В)

    Повышающие DC-DC преобразователи находят широкое применение в электронике. Они могут применяться как отдельные модули питания конкретных объектов, так и могут входить в часть электрической схемы.

    Например, можно поднять напряжение пятивольтного аккумулятора и питать от него через повышающий преобразователь нагрузку напряжением 12В (усилитель, лампу, реле и т.д.).

    Еще пример, в некоторых охранно-пожарных сигнализациях на линиях контроля около 30В постоянного тока, а сам блок контроля и управления работает от 12В, поэтому в последние внедряют повышающие преобразователи и они являются частью схемы блоков контроля и управления.

    Микросхема МС34063 представляет собой импульсный конвертор, поэтому она обладает высокой эффективностью (КПД) и имеет три схемы включения (инверторную, повышающую и понижающую). В этой статье будет описан исключительно повышающий (Step Up) вариант.

    dc-dc преобразователь своими руками. Простая схема

    МС34063 выполняется в корпусах DIP-8 и SO-8. Расположение выводов показано ниже.

    • dc-dc преобразователь своими руками. Простая схема
    • Основные технические параметры MC34063.
    • Входное напряжение ………. от 3 до 40 Вольт

    Выходное напряжение ………. от 1.25 до 38 Вольт

    Максимальный ток на выходе ………. 1.5 Ампер

    Максимальная частота ………. 100кГц

    Максимальный ток на выходе это пиковый ток на внутреннем транзисторе и он значительно больше тока нагрузки, поэтому не стоит надеяться, что преобразователь будет держать 1.5A на выходе. Ниже представлен калькулятор, который позволит правильно посчитать ток.

    1. Другую интересующую информацию по параметрам и внутреннему устройству микросхемы можно найти в Datasheet.
    2. Схема повышающего DC-DC преобразователя на MC34063.
    3. dc-dc преобразователь своими руками. Простая схема

    Опишу работу простыми словами.  В микросхеме MC34063 есть генератор, генерирующий импульсы с определенной частотой. Генератор, взаимодействуя с другими узлами, управляет выходным транзистором, коллектор которого соединен с выводом 1, а эмиттер с выводом 2.

    Когда выходной транзистор открыт, дроссель L1 заряжается входным напряжением через резистор R3.

    dc-dc преобразователь своими руками. Простая схема

    После закрытия выходного транзистора, дроссель отключается от земли и в этот момент происходит его разряд (самоиндукция). Энергия дросселя уже с противоположной полярностью и большая по силе поступает на диод VD1. После выпрямления напряжения диодом, оно поступает на выход схемы, накапливаясь в конденсаторе C3. Помимо накопления, данный конденсатор сглаживает пульсации.

    dc-dc преобразователь своими руками. Простая схема

    Схема конвертирует напряжение постоянного тока с 5В до 12В. Чуть ниже пойдёт речь об изменении номиналов элементов под нужные напряжения.

    Резисторами R1 и R2 задается напряжение на выходе. Резистор R3 ограничивает выходной ток до минимума, при превышении определенной мощности.

    • Конденсатор C2 задает частоту преобразования.
    • dc-dc преобразователь своими руками. Простая схема dc-dc преобразователь своими руками. Простая схема
    • Элементы.

    Все резисторы мощностью 0.25Вт кроме R3 (0.5-1 Ватт).

    В качестве L1 я взял готовый дроссель на 470мкГн, намотанный медным эмалевым проводом на гантель из феррита и отмотал три слоя, уменьшив тем самым индуктивность до 75мкГн (индуктивность больше расчетной допускается, а меньше нельзя).

    Дроссель должен выдерживать пиковый выходной ток (в моем случае 1.5А).

    Также можно взять кольцо из порошкового железа (жёлтого цвета) наружным диаметром 18мм, внутренним 8мм, толщиной 8мм и намотать медным проводом (диаметром 0.6мм и более) 30-40 витков (при 30 витках индуктивность получилась 55мкГн). Кольцо можно взять больше моего, но меньше не рекомендую.

    dc-dc преобразователь своими руками. Простая схема

    Диод VD1- Шоттки, либо быстродействующий (типа SF, UF, MUR, HER и т.д.) на ток не менее 1А и обратное напряжение в два раза больше выходного (в моем случае 40В).

    У микросхемы МС34063 есть отечественный аналог КР1156ЕУ5, они полностью взаимозаменяемы.

    Расчет преобразователя на MC34063 под другое напряжение и ток.

    Расчет займет не более одной минуты. Для этого необходимо воспользоваться On-line калькулятором расчета параметров МС34063. Помимо номиналов программа высчитает пиковый выходной ток, и в случае его превышения выдаст сообщение.

    1. Калькулятор считает минимальную индуктивность, поэтому ее можно брать с положительным запасом (произойдут незначительные изменения лишь в КПД).
    2. Пару слов…
    3. Расчетная частота (50кГц в моем случае) является минимальной и может значительно отличаться и изменяться в зависимости от входного напряжения и тока нагрузки.
    4. При выходном токе 200мА происходит достаточно сильный нагрев микросхемы MC34063, и работать в таком режиме долгое время возможно не сможет.
    5. dc-dc преобразователь своими руками. Простая схема
    6. Рекомендую использовать MC34063 в тех случаях, когда нужно питать слаботочную часть схемы или отдельную нагрузку током до 150-250мА, а для нагрузки 3-5А предлагаю обратить внимание на повышающие DC-DC преобразователи, построенные на базе UC3843 и UC3845.
    7. Печатная плата повышающего преобразователя на MC34063 (из 5В в 12В) СКАЧАТЬ
    8. Datasheet на MC34063 СКАЧАТЬ

    Источник: http://audio-cxem.ru/shemyi/istochniki-pitaniya/povyishayushhiy-dc-dc-preobrazovatel-na-mc34063-iz-5v-v-12v.html

    Простейший повышающий DC-DC преобразователь

    Рубрики:
    Своими руками

    Yuriy

    dc-dc преобразователь своими руками. Простая схема

    Здравствуйте, дорогие друзья. Сегодня я хочу поделиться с вами еще одной, гениальной в своей простоте, схемой повышающего DC-DC преобразователя (о первой схеме я писал в статье Простейшая схема питания светодиода от батарейки АА или ААА). Основываясь на этой схеме, я собрал два устройства. Первое устройство я обозвал «Модуль Чаплыгина«. Изображение этого модуля вы видите выше. Второе устройство представляет собой имитацию батареи «Крона«.

    Автором приведенной ниже схемы (в несколько измененном виде) является А. Чаплыгин. Смотрите: А. Чаплыгин «ПРОСТОЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ», журнал «Радио» №11 2001г.

    dc-dc преобразователь своими руками. Простая схема

    Двухтактный генератор импульсов, в котором за счет пропорционального токового управления транзисторами существенно уменьшены потери на их переключение и повышен КПД преобразователя, собран на транзисторах VT1 и VT2 (КТ837К). Ток положительной обратной связи протекает через обмотки III и IV трансформатора Т1 и нагрузку, подключенную к конденсатору С2.  Роль диодов, выпрямляющих выходное напряжение, выполняют эмиттерные переходы транзисторов. Особенностью генератора является срыв колебаний при отсутствии нагрузки, что автоматически решает проблему управления питанием. Проще говоря, такой преобразователь будет сам включаться тогда, когда от него потребуется что-нибудь запитать, и выключаться, когда нагрузка будет отключена. То есть, батарея питания может быть постоянно подключена к схеме и практически не расходоваться при отключенной нагрузке! При заданных входном UВx. и выходном UBыx. напряжениях и числе витков обмоток I и II (w1) необходимое число витков обмоток III и IV (w2) с достаточной точностью можно рассчитать по формуле:  w2=w1 (UВых. — UBх. + 0,9)/(UВx — 0,5). Конденсаторы имеют следующие номиналы. С1: 10-100 мкф, 6.3 В. С2: 10-100 мкф, 16 В.

    Транзисторы следует выбирать, ориентируясь на допустимые значения тока базы (он не должен быть меньше тока нагрузки!!!) и обратного напряжения эмиттер — база (оно должно быть больше удвоенной разности входного и выходного напряжений!!!).

    Модуль Чаплыгина я собрал для того, чтобы сделать устройство для подзарядки своего смартфона в походных условиях, когда смартфон нельзя зарядить от розетки 220 В. Но увы… Максимум, что удалось выжать, используя 8 батареек соединенных параллельно, это около 350-375 мА зарядного тока при 4.75 В. выходного напряжения! Хотя телефон Nokia моей жены удается подзаряжать таким устройством. Без нагрузки мой Модуль Чаплыгина выдает 7 В. при входном напряжении 1.5 В. Он собран на транзисторах КТ837К.

    dc-dc преобразователь своими руками. Простая схема

    На фото выше изображена псевдокрона, которую я использую для питания некоторых своих устройств, требующих 9 В. Внутри корпуса от батареи Крона находится аккумулятор ААА, стерео разъем, через который он заряжается, и преобразователь Чаплыгина. Он собран на транзисторах КТ209. Трансформатор T1 намотан на кольце 2000НМ размером К7х4х2, обе обмотки наматывают одновременно в два провода. Чтобы не повредить изоляцию об острые наружные и внутренние грани кольца притупите их, скруглив острые края наждачной бумагой. Вначале мотаются обмотки III и IV (см. схему) которые содержат по 28 витков провода диаметром 0,16мм затем, так же в два провода, обмотки I и II которые содержат по 4 витка провода диаметром 0,25мм. Удачи и успехов всем, кто решится на повторение преобразователя! 🙂 Первоисточники:

    А. Чаплыгин «ПРОСТОЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ», журнал «Радио» №11 2001г.

    Самодельный импульсный преобразователь напряжения из 1,5 в 9 Вольт для мультиметра

    Источник: http://oraznom-yi.blogspot.com/2015/03/prosteyshiy-povyshayuschiy-dcdc.html

    Ссылка на основную публикацию