Стробоскопический тахометр своими руками

Стробоскопический тахометр

Стробоскопический тахометр своими руками

Когда частота мерцания света совпадает с частотой вращения какого-нибудь объекта, например вентилятора, вращающийся вентилятор может казаться неподвижным. Изменяя частоту мерцания света можно определились скорость вращения.

Стробоскопический тахометр своими руками(en.wikipedia.org/wiki/Strobo…)

Кнопками управления частотой мерцания света можно легко и быстро установить любую частоту мерцания с точностью 0.01Hz (1 об/мин):

• до 1000Hz (60000 об/мин) для подключенного фонарика (см. видео на YouTube). • до 100Hz (6000 об/мин) для вспышки iPhone с iOS < 9.

  • • до 40Hz (2500 об/мин) для вспышки iPhone с iOS 9+.
  • ЕСЛИ СКОРОСТЬ ВРАЩЕНИЯ БОЛЬШЕ ПРЕДЕЛА ИЗМЕРЕНИЯ, ТО ЕЁ ВСЕ РАВНО МОЖНО ОПРЕДЕЛИТЬ СДЕЛАВ ИЗМЕРЕНИЯ ПРИ ДОСТУПНОЙ ЧАСТОТЕ МЕРЦАНИЯ, И ЗАТЕМ СДЕЛАВ ПРОСТОЙ РАСЧЕТ.

Для изменения частоты мерцания света можно просто нажать и держать кнопку. Частота мерцания может отображаться либо в Hz либо в RPM (об/мин).

Наблюдаемая картина будет отчетливее при слабом внешнем освещении.

При долгой работе, в случае перегрева, вспышка iPhone автоматически отключается.

Подключение фонарика

Стробоскопический тахометр своими руками

Следуйте следующим рекомендациям: • Выберите светодиодный фонарик с маленьким напряжением источника питания (4.5-6В).

  1. • Если Вы паяете плохо, посмотрите следующее видео.
  2. • Если что-то непонятно, обязательно пишите на email.

• Не используйте алюминиевую фольгу т.к. к ней трудно припаять провод. Стробоскопический тахометр своими руками Стробоскопический тахометр своими руками Стробоскопический тахометр своими руками

Стробоскоп

Стробоскопический тахометр своими руками

Чтобы подключить мощный фонарик нужно использовать более сложную схему. Однако схема все равно достаточно простая для новичка. Главное выбрать фонарик с фокусирующей линзой (зумом).

Стробоскопический тахометр своими руками

На видео первый фонарик имеет 2000 люмен (по словам продавца), а второй 1000 люмен. Оба фонарика имеют несколько режимов свечения (полная мощность, не полная мощность, мигания с разной частотой). Переключение между режимами происходит при быстром выключении и включении.

Поэтому, чтобы в процессе работы стробоскопа не было переключения режимов, используется сопротивление замыкающее цепь фонарика. Перед использованием стробоскопа нужно выбрать режим полной мощности, размыкая цепь фонарика, как это делается на видео.

Для выбора режима важно запомнить последовательность включения режимов.

Стробоскопический тахометр своими руками Стробоскопический тахометр своими руками

Лазерный тахометр

Технические характеристики: • Диапазон измерения от 0.3 Hz (18 RPM) до 1000 Hz (60 000 RPM). • Шаг 0.01-0.0001 Hz (1-0.01 RPM) . • Интервал обновления 1 сек.

• Требуемая мощность лазера 5 мВт.

  • Следуйте следующим рекомендациям: • ОБЯЗАТЕЛЬНО НУЖНО СОЕДИНИТЬ ДЕТАЛИ ПАЙКОЙ, иначе будет много шума.
  • • Если Вы паяете плохо, посмотрите следующее видео.

• Если что-то непонятно, обязательно пишите на email.

Не покупайте лазерную указку с маленькими батарейками (таблетками), т.к. «разоритесь» на покупке батареек.

Без паяльника и мультиметра

Магнитный тахометр

Этот тахометр основан на измерении магнитного поля от вращающегося магнита. Магнитное поле измеряется магнетометром iPhone. Магнитный тахометр больше всего подходит для измерения маленькой скорости вращения (от 6 об/мин). Им можно измерять и среднюю скорость вращения (до 2700 об/мин), однако при этом возможно отрывание магнита и сильная вибрация от смещения центра тяжести.

Технические характеристики: • Диапазон измерения от 0.1 Hz (6 RPM) до 45 Hz (2700 RPM). • Шаг 0.2-2 %.

• Интервал обновления 2-5 сек.

Правила использования: 1. Магнит должен быть закреплен так чтобы один из полюсов был направлен на iPhone когда магнит находится ближе всего к iPhone. 2. iPhone должен лежать неподвижно. 3. Если скорость вращения большая, то нужно обязательно использовать защитные очки и защитить iPhone от оторвавшегося магнита. 4.

Сильное магнитное поле от прикрепленного магнита может влиять на скорость вращения электрических двигателей. 5. Электродвигатели создают изменяющееся магнитное поле, поэтому прикрепленный магнит должен быть достаточно сильным чтобы создать магнитное поле большее чем от электродвигателя. 6. Результат будет лучше если iPhone положить перпендикулярно вращающемуся магниту. 7.

Лучше использовать неодимовые магниты, потому что они создают большое магнитное поле имея маленькие размеры. Но нужно помнить, что сильное магнитное поле влияет на электродвигатели и при вращении может генерировать электрический ток в проводниках. Максимально допустимый размер неодимового магнита около 1х0.5х0.5 см. 8.

Чувствительность магнитометра у разных моделей iPhone сильно различается. Поэтому некоторые модели могут пытаться измерять фоновое магнитное поле.

9. Если что-то непонятно, обязательно пишите на email.

Измерение скорости вращения стробоскопическим тахометром

Для определения скорости вращения (например, для определения скорости вращения вентилятора), должна быть видна плоскость перпендикулярная оси вращения, и на этой плоскости должна быть только одна метка. Например такая:

Измерения нужно начинать с самой большой частоты, которая возможна для исследуемого вентилятора. Нажав и удерживая кнопку, уменьшайте частоту мерцания света.

Наблюдаемая картина будет меняться. Например если реальная скорость вращения вентилятора 1100 об/мин, и Вы начнете измерения с частоты мерцания соответствующей 4400 об/мин, то по ходу уменьшения частоты мерцания, будут появляться следующие неподвижные изображения:

Четыре или три метки можно увидеть и при других частотах мерцания вспышки, например три неподвижные метки можно увидеть при частоте мерцания 1650 всп./мин (реальные обороты умноженные на 1,5), четыре метки при частоте 1466 всп./мин (реальные обороты умноженные на 1,333), пять меток при частоте 1375 всп./мин (реальные обороты умноженные на 1,25).

Неправильный вывод можно сделать и при попытке определить обороты увеличивая частоту мерцания вспышки. Например при частоте мерцания 367 всп./мин (реальные обороты деленные на 3) видна одна метка:

Эта частота может ввести в заблуждение, т.к. после её умножения или деления на 2, будет получаться такая же картина как и при правильной частоте (в данном случае при частоте мерцания соответствующей 1100 об/мин). Поэтому нельзя начинать с маленькой частоты мерцания затем увеличивая её.

Определив скорость вращения, можно сохранить результат, сделав фото с написанным на нем результатом измерения.

Расчет скорости вращения если она больше предела измерения

Когда скорость вращения больше предела измерения, её можно рассчитать используя простую формулу. Например, реальная скорость вращения 11000 об/мин. При уменьшении частоты мерцания света с 6000 об/мин, нужно определить первую частоту при которой будет наблюдаться одна неподвижная метка:

Это будет при частоте 5500 RPM (F1). При дальнейшем уменьшении частоты, следующая частота при которой будет наблюдаться одна неподвижная метка будет при 3667 RPM (F2). И следующая при 2750 RPM (F3). Расчет выполняется по двум соседним точкам:

Реальные обороты = (F1 • F2)/(F1 – F2) 5500•3667/(5500–3667)=11003 об/мин или

Реальные обороты = (F2 • F3)/(F2 – F3)

3667•2750/(3667–2750)=10997 об/мин

Этим способом также можно воспользоваться когда скорость вращения меньше предела измерения и стандартный способ вызвал затруднения (например когда неизвестна ориентировочная скорость вращения).

Шоппинг

1:

AliExpress: «2000 Lumen Flashlight XML T6 LED zoomable» ИЛИ AliExpress: «Mini Flashlight XM-L T6 LED 18650»

2:

Магазин строительных товаров:

Витая пара

3:

AliExpress: «breadboard 170»

4:

AliExpress: «breadboard jumper wires 65 pcs»

5:

AliExpress: «TIP31»

6:

AliExpress: «TIP32»

7:

AliExpress: «IRLB3034»

8:

eBay: «resistor 2K 1W» ИЛИ eBay: «resistor 1W kit»

9:

eBay: «resistor 10K 1W»

10:

eBay: «resistor 51 1W»

11:

eBay: «cable 3.5mm 4 pole male to male»

12:

AliExpress: «laser pen red»

13:

AliExpress: «battery box switch aaa 4»

14:

AliExpress: «laser module red»

15:

AliExpress: «phototransistor 3DU5C»

16:

AliExpress: «resistor 5.1K 1/4W 100pcs»

17:

AliExpress: «100pcs 2.54mm jumper male pin»

18:

AliExpress: «100pcs 1p 2.54mm plastic head»

19:

eBay: «neodymium magnet»

Источник: http://usefulmobileapps.com/ru/strobe-light-tachometer.php

Цифровой тахометр на AVR микроконтроллере (ATtiny2313)

Тахометр измеряет частоту вращения деталей, механизмов и других агрегатах автомобиля. Тахометр состоит из 2-х основных частей – из датчика, который измеряет скорость вращения и из дисплея, где будет показать значения. Во основном тахометр градуируется в оборотах в минуту.

Сделать такой прибор самостоятельно конечно же можно, предлагаю схему с микроконтроллером AVR Attiny2313. С таким микроконтроллером можно получить 100 – 9990 об /мин. , точность измерения составляет  +/-3 оборотов в минуту.

  • Характеристики микроконтроллера ATtiny2313
    EEPROM 1 Кб
    Аналоговые входы (АЦП)
    Входное напряжение (предельное) 5,5 Вольт
    Входное напряжение (рекомендуемое) 4,5-5 Вольт
    ОЗУ 128 байт
    Тактовая частота 20 МГц
    Flash-память 2кБ
  • Стробоскопический тахометр своими руками
  • Стробоскопический тахометр своими руками

Стробоскопический тахометр своими руками Из схемы видно что используется 2 входные цепы – вывод 6(РD 2) и 11 (РD 6). Первый – вход инто (Into) , это для расчета оборотов двигателя. А вывод 11 служит для регулировки яркости индикатора,при включении габаритов на авто.

Стробоскопический тахометр своими руками

На выводе 11 установлен резистор с номиналом 4.7 кОм, не изменяйте номинал, а то датчик начнет работать нестабильно при включение по однопроводной схеме.

  1. Стробоскопический тахометр своими руками
  2. В отличие других схем, тут использовались 4 транзистора и 4 резистора, таким образом схему упростили.
  3. Стробоскопический тахометр своими руками

Схема имеет 8 сегмента в каждом символе, по 5 мА каждый, общая сумма будет 40 мА, следовательно на порты нет большой нагрузки. Посмотрим графики работы устройства.

Стробоскопический тахометр своими руками

Из графики можно заметить что ток может достигнуть от 60мА  до 80мА на выход пин. Для точной настройки нужно подбирать ограничительные резисторы с номиналом 470 оМ.

Стробоскопический тахометр своими руками

Выбор дисплея не критичен, выбирайте любой светодиодный индикатор на четыре цифры, либо собирайте из отдельных светодиодов. Используйте красный индикатор, чтобы на солнце было все хорошо видно. Тахометр питается от 12 вольт.

Стробоскопический тахометр своими руками

Кварцевый резистор выбран на частоту 8МHz, для точного и стабильного измерения. Входной фильтр используется для подключения к выводу катушки зажигания.

  • Стробоскопический тахометр своими руками
  • В прошивке в 17-й строке найдите следующее.
  • 17. #define byBladeCnt 2 //1- две катушки, 2 – одна катушка, 4 – мотоцикл…
  • Этот параметр нужно менять, если у вас советский автомобиль то поставьте 2, если мотоцикл то 4, а если автомобиль с системой зажигания с двумя катушками то 1.

Перейдем к изготовлении. Печатку делал по технологии ЛУТ, использовал односторонний фольгированный стеклотекстолит.

Все аккуратно собрал и положил в корпус от реле РП-7. По моему все вышло довольно красиво, далее осталось установить тахометр на панель управления. Устройства работает стабильно и надежно.

—Прошивка для индикатора с ОК(-) —Исходный код на С (CodeVisionAVR) —sch_splan —pcb —Прошивка_печатка —прошивка для индикатора с ОА(+)

Источник: https://xn—-7sbbil6bsrpx.xn--p1ai/cifrovoj-taxometr-na-avr-mikrokontrollere-attiny2313.html

Светодиодный стробоскоп для измерения оборотов

Представленная схема является измерителем скорости вращения электродвигателей, его особенность: освещение вращающегося объекта светодиодом большой мощности. Измерение заключается в установке частоты вспышек, совместимых с частотой вращения (установки неподвижного изображения при освещении светом стробоскопа из светодиодов).

Измерение можно проводить без остановки исследуемого устройства — прямо на ходу. Стробоскоп был построен на основе микроконтроллера ATMEGA8, а обороты отображаются на ЖК-дисплее. Управление осуществляется с помощью энкодера и кнопочек сенсорных. Все устройство может питаться от батареи, потому что из-за импульсного характера работы светодиода он не потребляет много энергии.

Система с успехом питается от обычного аккумулятора 9 В типа Крона.

Принципиальная схема LED стробоскопа

Стробоскопический тахометр своими руками

Как нетрудно догадаться глядя на схему — основой системы является микроконтроллер U1 (ATMEGA8-16AU), который работает от кварцевого резонатора X1 (16 МГц). Дополнительные конденсаторы C1 (22pF) и C2 (22pF) необходимы для правильной работы резонатора.

Читайте также:  Светодиодный usb фонарик - подсветка для клавиатуры своими руками

Для прошивки программы используется разъем Prog. Разъем необходим, так как микроконтроллер в корпусе SMD, что делает сложным программирование подпайкой проводов.

Конденсатор C5 (100nF) фильтрует питание микроконтроллера. Конденсаторы C6 (100nF) и C7 (100nF) снимают управляющий сигнал, сгенерированный энкодером IMP, обеспечивая безотказную работу в программе.

Кнопки S1 — S6 представляют собой дополнительную клавиатуру устройства. Элемент генерации вспышек света — светодиод мощностью 0.

5 Вт, его ток ограничен через резистор R4 (30R/2W), а управляется он с помощью транзистора T2 (BC337) и резистора R3 (330R).

Светодиод подключен непосредственно к батарее, в обход стабилизатора, чтобы свести к минимуму воздействие импульсов тока на работу микроконтроллера и разгрузить стабилизатор напряжения U2 (78L05). Конденсаторы C3 (220uF) и C4 (47uF) необходимы для правильной работы стабилизатора.

Показываются результаты измерения на экране W1 (LCD 16×2). Контрастность настраивается с помощью P1 (10k) и подсветку можно включить или выключить программно транзистором T1 (BC556), R1 (47R) и R2 (3,3 к).

Принцип работы

Данные из таблицы делятся на две части, от 60 до 480 об/мин и второй интервал от 480-42000 об/мин. Это разделение вытекает из работы программы, в которой работают два диапазона измерения.

Стробоскопический тахометр своими руками Стробоскопический тахометр своими руками

На графиках видно, точки измерения (зависимость оборотов от теоретических вращения, измеренных, переведены с измерения частоты) вместе с соответствующими кривыми калибрования.

Стробоскопический тахометр своими руками

В таблице результаты измерений частоты, генерируемой системой в зависимости от показанной на дисплее.

Сборка светодиодного стробоскопа

Стробоскопический тахометр своими руками

Схема проста в монтаже, но содержит элементы SMD которые паять надо аккуратно специальным паяльником с насадкой. Сборку следует начинать с двух перемычек. Далее конденсаторы и резисторы SMD (в корпусах 0805 2х1.2 мм). Следующим припаиваем микроконтроллер U1. Кнопки должны иметь длину оси 15 мм и их следует впаивать, чтобы они минимально выступали за ЖК-дисплеем — это будет важно при установке платы в корпус.

Стробоскопический тахометр своими руками

Плата спроектирована так, что с легкостью вписывается в любой подходящий пластиковый корпус. При выпиливании отверстий в корпусе можно воспользоваться рисунком с расположением отверстий, специально подготовленном для этой цели. Его следует вставить в корпуса при помощи скотча и просверлить рисунок. Это значительно облегчит выполнение корпуса.

Стробоскопический тахометр своими руками

 Стробоскоп предназначен для питания от 9 В аккумулятора, но можно использовать другой источник питания с напряжением 7-12 В. Все файлы проекта (прошивка, рисунки плат) — скачайте напрямую с сервера Элво.ру

   Схемы на микроконтроллерах

Источник: https://elwo.ru/publ/skhemy_na_mikrokontrollerakh/svetodiodnyj_stroboskop_dlja_izmerenija_oborotov/9-1-0-1055

Автомобильный стрелочный тахометр для новичка или немного шаманства с фиксированной точкой на AVR

Всем привет! Хотелось бы поделиться с сообществом своей историей модернизации тахометра ТХ-193 Стробоскопический тахометр своими руками

Неделю назад обратился ко мне один человек с довольно нестандартным заданием — нужно было обеспечить работу древнего тахометра ТХ-193(ВАЗ 2106) с современным двигателем ВАЗ21126(Приора), имеющем систему зажигания с индивидуальными катушками на каждый цилиндр, а значит просто подключить ТХ-193 к катушке зажигания уже не получится. К тому-же заказчик хотел повысить эксплуатационные качества прибора, оставив не тронутым его внешний вид и дизайн. В общем дело кончилось тем, что я взялся выпотрошить электронную начинку прибора и разработать свою, с блэкджеком и шлюхами. Информацию о частоте вращения коленчатого вала тахометр теперь будет получать от ЭБУ Январь 7.2, для чего в последнем имеется специальный вывод.

Под катом фото, видео, схема, исходники и много текста, повествующего о логарифмах и о том как правильно масштабировать данные и отделаться от запятой.

Хард

Начнем с устройства ТХ-193. Механическая часть прибора представляет из себя миллиамперметр классической конструкции, с постоянным магнитом и подвижной катушкой, приводящей в движение стрелку. Для разработки схемы по сути достаточно было знать о миллиамперметре лишь то, что при токе порядка 10мА стрелка отклоняется до предела, а сопротивление обмотки равно примерно 180Ом. В качестве мозга был выбрал контроллер ATtiny2313A славной фирмы Atmel, тактируемый от внешнего кварцевого резонатора на 16МГц. Питание прибора осуществляется от бортовой сети автомобиля, а значит по ГОСТу он должен выдерживать «бороду» до 100В и стабильно работать в диапазоне от 9-15В. Ввиду незначительного потребления(несколько десятков миллиампер) было принято решение использовать линейный стабилизатор 7805 с индуктивным фильтром и сапрессором для защиты от импульсных помех. Прибор собирался из того, что было под рукой, поэтому в готовом изделии применяется мощная версия 7805, хотя вполне хватило бы и 78L05 на 100мА. Миллиамперметром контроллер управляет, естественно, используя ШИМ. Для чего был задействован 16ти разрядный таймер в режиме Phase and Frequency Correct PWM. Информация о частоте вращения коленчатого вала передается от ЭБУ в виде импульсов от 0 — 12В. Активный уровень низкий. 2 импульса за 1 оборот коленчатого вала. Для захвата этих импульсов используется внешнее прерывание INT0 и соответствующая цепочка из RC фильтра, подтяжек и защитных диодов. В общем и целом схемотехника устройства довольно типична и я с удивлением обнаружил, что только что так много написал о ней. Но да не судите строго, первая статья всё-таки.Стробоскопический тахометр своими руками Собранный прибор без циферблата теперь выглядит так:Стробоскопический тахометр своими руками

Софт

На самом деле ещё до вычерчивания схемы я оперативно собрал всё это дело на макетке, взяв контроллер в DIP корпусе и сразу же принялся махать стрелкой)) В общем то софт оказался немного интереснее харда. Начнем с общей архитектуры: Таймер 0 тикает с частотой 250кГц, а значит период тика = 4мкс прерывание по переполнению происходит с частотой 250кГц / 256 = 0.976кГц а значит прерывание происходит один раз в 1024мкс. Можно было заморочиться и подогнать это дело ближе к одной миллисекунде путем обновления счетчика таймера в прерывании, но в данной задаче это не к чему. Т.е. мы можем измерять время с точностью 4мкс, что вполне достаточно для заданной точности прибора. Таймер 0 у нас не только отсчитывает время, но ещё и выставляет флажки для запуска тех или иных задач с определенной периодичностью. Задачи у нас две. Давать отмашку прерыванию INT0 на измерение периода импульсов на входе и изменять положение стрелки. Таймер 1 тикает с частотой 16мГц, но т.к. он 16ти битный и используется режим Phase and Frequency Correct PWM — итоговая частота ШИМ оказывается очень небольшой и составляет что-то около 122Гц. Это потому, что таймер тикает сначала вверх, а потом вниз. Зато имеем тру 16битный ШИМ и можем очень точно рулить стрелкой! В даташите найдутся все подробности. Механика, к слову сказать, оказалась отвратительного качества, плавно двигать стрелку было не реально из-за повышенного трения в механизме, который пришлось для начала хотя-бы смазать трансмиссионным маслом. Но это уже детали. Была составлена таблица соответствия показаний прибора с соответствующим значением регистра таймера в ШИМ попугаях. В исходниках это дело называется GAUGE_TABLE и вынесено по привычке в отдельный файл. Далее было обнаружено, что если просто одним махом изменить ток в цепи амперметра для того, чтобы к примеру передвинуть стрелку на 1000 вперед, то она совершит два-три-четыре колебания в районе целевой отметки, что было совершенно неприемлемо и на что заказчик обращал особое внимание. Дело в том, что эти тахометры изначально имеют такую проблему и несколько раз газанув в такт колебаниям можно заставить стрелку раскачиваться со значительной амплитудой(более половины шкалы!). С этим нужно было что-то делать. Идея моя заключалась в том, чтобы подводить стрелку к отметке серией более мелких шагов, постепенно приближаясь к цели. Собственно говоря эта часть и является самой интересной и полезной для новичков, т.к. требует некоторой сноровки. Ведь имея дело с микроконтроллером вызов log2() в цикле является, мягко говоря, не самой удачной идеей. К тому-же 8битная архитектура накладывает ещё больше ограничений. Ну а про «плавучку» (floating point) и вовсе нужно забыть. Но все эти трудности, как всегда, приводят лишь к более глубокому пониманию процессов и расчётов, производимых процессором. Текста почему-то получается всё больше, но не остановиться более подробно на этом моменте я просто не могу! Итак, понятно, что нам нужна логарифмическая прогрессия. Шаг изменения тока в цепи миллиамперметра должен уменьшаться по мере приближения к целевой отметке. Ресурсы на вес золота, а значит только табличный метод. Точек тоже по возможности минимум. Начнем с построения логарифмической таблицы.Стробоскопический тахометр своими руками Прекрасно! То, что нужно! Но во-первых — точек аж 50, а во вторых все числа с плавающей точкой. Это нам никак не подходит! Поэтому отбираем из имеющегося массива 5 точек с шагом 10. Получаем что-то вроде этого:Стробоскопический тахометр своими руками Уже лучше. Последовательное приближение к цели всё ещё сохраняется, но точек в 10 раз меньше. Дальше нужно нормировать полученный набор. Т.е. сделать так, чтобы все значения находились в диапазоне от 0 до 1. Для этого просто разделим каждый элемент на 5,64385618977472 (максимальное значение нашего массива).Стробоскопический тахометр своими руками Таким образом получаем всё ту-же логарифмическую зависимость, но уже в на много более удобном для дальнейших вычислений виде. Такую таблицу уже можно довольно легко применять, если бы не точка после нуля. Но с этим мы тоже довольно легко разберемся. Теперь я хочу, чтобы мы приняли красивое значение 1024 за единицу и снова пересчитали нашу таблицу. Получаем Стробоскопический тахометр своими руками Как видим, форма графика не изменилась, но цифры теперь укладываются в 16битный диапазон и нет никаких дробей. В исходниках полученный массив называется logtable[] Масштабирующий коэффициент(если можно его так назвать) 1024 появился здесь не случайно и нужно очень хорошо понимать почему именно 1024. Во-первых это степень двойки и выбрана она потому, что дорогие операции деления и умножения на степень двойки можно заменить дешевым сдвигом влево/вправо и было-бы глупо не использовать такую возможность. Во-вторых коэффициент должен выбираться и исходя из масштабов тех данных, к которым он будет применяться. В нашем случае это значения регистра 16ти разрядного таймера, который управляет заполнением ШИМа. Экспериментально было выявлено, что неудовлетворительные колебания стрелки обнаруживаются даже при её резком смещении на 200 об/мин. Т.е. если нужно двинуть стрелку на более чем ~200 об/мин — потребуется сглаживание. Из таблицы GAUGE_TABLE видно, что соседние ячейки в среднем отличаются на 4000 ШИМ попугаев, что соответствует примерно 500 об/мин на шкале прибора. Не трудно прикинуть, что в цифрах смещение стрелки на 200об будет 4000 / 2,5 = 1600 ШИМ попугаев. Следовательно масштабирующий коэффициент нужно выбрать таким образом, чтобы во-первых он был как можно бОльшим, потому что иначе мы теряем разряды и точность, а во-вторых как можно меньшим, чтобы не заставлять нас переходить от 16ти разрядных переменных к 32х разрядным и не расходовать ресурсы понапрасну. В итоге выбираем наименьшую степень двойки, которая меньше 1600 и обеспечивает достаточную точность. Это и будет 1024. Этот момент очень важен. Я сам до сих пор порою испытываю трудности с выбором правильных коэффициентов и размеров переменных. Ну а дальше уж пошло-поехало. Находим в коде реализацию display_rpm() и видим, что для определения конкретного значения в ШИМ попугаях используется таблица GAUGE_TABLE[] и предположение, что между соседними отметками шкала линейна. Для организации изменения тока по логарифмическому закону введен массив на 5 точек pwm_cuve[] в котором содержится набор значений, который нужно последовательно отнять или прибавить(в зависимости от направления движения стрелки) от pwm_ocr1a_cur_val чтобы заставить стрелку двигаться плавно и чётко. каждый шаг формируется путем умножения значения pwm_delta на коэффициент из нашей таблицы logtable[]; Перед умножением значение предварительно масштабируется путем деления на 1024. Конечный расчётный пункт назначения стрелки target_pwm записывается в pwm_cuve[] как есть, потому что из-за проблем с округлением и из-за ограничения размерности переменных 16битами точное значение в результате расчётов будет там образовываться весьма не часто, поэтому приходится обеспечить гарантию того, что стрелка окончит свой путь в заданной точке. В общем то всё вышесказанное по сути заключено в одной строке

  • pwm_cuve[ table_i ] = pwm_ocr1a_cur_val + (pwm_delta / LOG_TABLE_MAX * logtable[ table_i ]);
  • Сократилось всё это до engine_rpm = (uint16_t)(15000000UL / (uint32_t)rot_time);
  • Немного видео, как и обещал
Читайте также:  Индивидуальный охлаждающий пакет своими руками. первая медицинская помощь. пайка пленки

Далее главный цикл по сигналу от таймера0 раз в PWM_UPD_PERIOD выгребает значения из pwm_cuve и присваивает их переменной pwm_ocr1a_cur_val, значение которой в прерывании будет присвоено регистру OCR1A, что немедленно приведет к изменению заполнения ШИМа и изменению тока в цепи миллиамперметра. Вот, собственно и почти все хитрости, за исключением перевода периода, представленного в тиках таймера в частоту вращения коленчатого вала, которая измеряется в об/мин. О том как получилась эта цифра мы можем поговорить или не поговорить в следующий раз, потому что и без того текста получилось не мало и явно не многие дочитают даже до этого места. Честно гвооря в коде применено ещё несколько «хитростей», которые могут показаться новичкам не совсем очевидными. Если кому-то захочется подробнее разобраться — вэлкам в каменты и лс. На точность показаний не обращайте внимание, стрелка нормально не одета + циферблат не закручен. Движение стрелки с шагом 1000об/мин одним скачком. Плавное изменение тока Дело ясное, что в реальности скачков в 1000об/мин не будет и те незначительные перелеты стрелки, которые всё-же можно наблюдать на видео не станут проблемой. Просто если устранить и их — то можно здорово потерять в быстродействии прибора и его показания будут отставать от реальности. P.S. Не сказать, что в архиве совсем говнокод, но да, местами можно было сделать красивее. Да, я знаю, что магические числа это плохо и да, я мог бы лучше. С другой стороны потеряться в исходнике в 200строк довольно сложно, поэтому кое-где я позволил себе немного на халтурить. Просто зарегаться на хабре хотелось уже давно, а написать сколько-нибудь подробную статью по прошествии времени после реализации проекта становится всё сложнее, поэтому я решил, что сегодня будут «вести с полей». Так что реальный код с реального устройства, собранного за реальный срок в 7 вечеров, которое завтра будет установлено на славный автомобиль ВАЗ 2108 с двигателем 21126 и надеюсь будет ещё долго радовать владельца, согласившегося выложить за мои труды аж 100 вечнозеленых. Но мы то с вами знаем, что проделал я весь этот путь не только и не столько ради денег. Ведь так приятно, когда ты создал что-то и оно даже работает!

В архиве проект Atmel studio и схема+плата в Altium designer. Изготавливалась плата методом ЛУТ.

UPD: Архив был выложен на бесплатный файлообменник и потому скоропостижно скончался. Для хранения архива на habrastorage я встроил его в фото тахометра без циферблата(оно в верхней части статьи). В общем jpg нужно сохранить себе и открыть винраром. Можно ещё просто изменить расширение на zip. UPD2: Схема и плата переработаны, картинки обновлены, архив по прежнему в картинке. UPD3

Источник: https://habr.com/post/193892/

Стробоскоп тахометр своими руками

Автомобильный тахометр — это измерительный прибор, который предназначен для измерения количества оборотов коленчатого вала двигателя в минуту (об/мин). Раньше в автомобили устанавливались механические тахометры. В современных автомобилях устанавливаются электрические или электронные тахометры.

Во время работы двигателя автомобиля тахометр позволяет контролировать стабильность его оборотов на холостом ходу и при движении автомобиля. По стабильности оборотов на холостом ходу можно судить о состоянии системы подачи топлива, системы зажигания и самого двигателя.

При установке оборотов холостого хода и регулировки угла опережения зажигания двигателя с помощью стробоскопа без тахометра не обойтись. Необходимо одновременно производить регулировку и наблюдать за оборотами двигателя.

После каждого подкручивания винта регулировки смотреть показания тахометра, установленного в салоне автомобиля неудобно. Может выручить установленное в салоне зеркало, но это тоже не лучшее решение.

Гораздо удобнее иметь тахометр, вмонтированный в стробоскоп.

Стробоскопический тахометр своими руками

При изготовлении стробоскопа своими руками я вмонтировал, тахометр в его корпус. При проверке и настройке УОЗ двигателя такое техническое решение показало удобство в работе.

Опубликованные в Интернете аналоговые схемы тахометров отличаются большей погрешностью показаний, выполненные на цифровых микросхемах не каждому автолюбителю под силу повторить.

Предлагаемое Вашему вниманию схемное решение тахометра отличается простотой и высокой точностью показаний в независимости от изменения температуры окружающей среды и питающего напряжения. Имеет растянутую шкалу, что позволяет при применении малогабаритного стрелочного индикатора измерять частоту оборотов двигателя с высокой точностью.

Электрическая принципиальная схема

Представленная схема тахометра отличается простотой и доступностью деталей для повторения благодаря применению интегрального таймера — микросхемы КР1006ВИ1 (аналог NE555).

Стробоскопический тахометр своими руками

Схема состоит следующих функциональных узлов. Формирователя импульсов, выполненного на VT1-VT2, широтно-импульсного модулятора на микросхеме DA1 типа КР1006ВИ1 и резисторного моста на резисторах R8-R13.

Для снятия показаний применен электродинамический стрелочный микроамперметр. К недостаткам схемы тахометра можно отнести необходимость балансировки моста для каждого типа миллиамперметра при повторении схемы.

Но это не сложная операция.

Питающее напряжение на схему тахометра подается непосредственно с клемм автомобильного аккумулятора.

Принцип работы

При поступлении импульсов от прерывателя или катушки индуктивности, используемой в стробоскопе, конденсатор С1 через диод VD1 и резистор R1-R2 перезаряжается, создавая на базе транзистора VT1 импульсы, открывая его.

В результате на коллекторе транзистора, включенного в ключевом режиме, образуются короткие положительные импульсы, длительность которых определяется емкостью конденсатора С1. VT2 служит для инвертирования импульсов, перед подачей на вход DA1.

Форма импульсов приведена на электрической схеме тахометра с правой стороны, верхняя осциллограмма. На фото ниже структурная схема КР1006ВИ1.

Стробоскопический тахометр своими руками

Интегральный таймер КР1006ВИ1 включен по типовой схеме формирователя импульсов. По положительному фронту импульсов, поступающих на вход 2, микросхема формирует на выходе 3 положительные импульсы с шириной, линейно изменяющейся в зависимости от частоты поступающих на вход. Частота выше, импульсы шире. Исходная ширина импульсов зависит от постоянной времени R6, R7 и C3.

Выходящие с вывода 3 микросхемы DA1 импульсы поступают на левое плечо моста тахометра, которое образуют резисторы R8-R9 и R11.

На правое плече моста тахометра, которое образую резисторы R10 и R12, R13 поступает постоянное опорное напряжение +9В с интегрального стабилизатора напряжения К142ЕН8А.

Конденсатор С4 исключает дергание стрелки тахометра при измерении низких оборотов двигателя. Стабилизатор так же обеспечивает питание всех активных элементов тахометра. В диагональ моста включен микроамперметр.

Благодаря такому схемному решению удалось исключить нелинейные элементы, получить линейное показание миллиамперметра при изменении частоты и обеспечить высокую точность измерений частоты вращения двигателя за счет растянутой шкалы.

Так как в тахометре, по соображениям габаритных размеров, применен малогабаритный миллиамперметр от индикатора уровня записи магнитофона, у которого длина шкалы мала, то только благодаря растянутой шкале удалось получить высокую точность показаний.

Микросхемы стабилизаторов серии К142ЕН обеспечивают стабильное выходное напряжение в широком диапазоне температуры, чем и обусловлено применение микросхемы К142ЕН8А в тахометре. Конденсаторы С2, С5 и С6 установлены для сглаживания пульсаций питающего напряжения.

Конструкция и детали

Так как схема простая, то печатную плату я не разрабатывал. Монтаж всех деталей, кроме миллиамперметра, выполнил на универсальной макетной плате размером 30 мм×50 мм. На фотографии видно как размещены элементы схемы.

Стробоскопический тахометр своими руками

Для подвода питающего напряжения и входного сигнала применен трех контактный разъем. Шкала миллиамперметра напечатана на принтере и приклеена сверху на его штатную шкалу.

Стробоскопический тахометр своими руками

Плата с деталями закреплена в крышке корпуса стробоскопа на винтах. Миллиамперметр установлен в вырезанном в крышке корпуса прямоугольном окне и закреплен с помощью силикона.

Стробоскопический тахометр своими руками

Такая конструкция размещения тахометра обеспечивает удобство доступа к плате стробоскопа, достаточно снять крышку, отсоединить разъем.

Настройка тахометра

Если не допущены ошибки при монтаже деталей и исправны элементы схемы, то тахометр сразу начнет работать. Необходимо будет только подогнать номиналы резисторов моста. Для этого нужно с импульсного генератора подать на вход тахометра прямоугольные импульсы частотой, взятой из ниже приведенной таблицы и откалибровать шкалу.

Так как в автомобилях обычно за один оборот вала двигателя датчик выдает два импульса, то при калибровке тахометра нужно устанавливать частоту на генераторе в два раза больше. Например, при калибровке точки шкалы 800 нужно будет подать на вход тахометра импульсы частотой не 13 Гц, а 26 Гц. Ряд частот для такого случая приведен в нижней строке таблицы.

Для того, чтобы не испытывать трудностей при калибровке шкал тахометра нужно знать принцип работы мостовой схемы. Перед Вами принципиальная схема моста постоянного тока. При равенстве соотношений величин резисторов R1/R2 и R3/R4 напряжения в точках диагонали моста A и B равны, и ток через mA не протекает, стрелка стоит на нуле.

Если, например, уменьшить величину резистора R1, то напряжение в точке А увеличится, а в точке В останется прежним. Через миллиамперметр, находящийся в диагонали моста потечет ток и стрелка отклонится. То есть при постоянном напряжении в точке В и изменении напряжения в точке А стрелка прибора будет двигаться относительно шкалы.

Стробоскопический тахометр своими руками

В схеме тахометра функцию резистора R1 выполняет резистор R9, и так далее.

При увеличении оборотов двигателя, частота и ширина импульсов с выхода микросхемы увеличивается и таким образом увеличивается напряжение в левой точке подключения миллиамперметра, протекающий ток увеличивается и стрелка отклоняется.

Резисторы в плечах моста подобраны в таком соотношении, чтобы мост был изначально разбалансирован, и равенство напряжений в точках подключения миллиамперметра наступало при 700 оборотов двигателя.

Номиналы резисторов на схеме указаны при сопротивлении рамки миллиамперметра 1,2 кОм. Если использовать прибор, имеющий другое сопротивление рамки, то придется подбирать номинал резисторов R8, R9 и R12, R13, временно заменив их переменными. После калибровки прибора, измеряется сопротивление переменных резисторов, и они заменяется постоянными.

Читайте также:  Табурет своими руками

Переключатель S1 можно не устанавливать и настроить прибор для измерения в требуемом диапазоне по одной шкале. В таком случае точность измерений снизится в два раза. При растянутой шкале прибора такой точности тоже будет достаточно.

Тахометр, выполненный по предложенной схеме, является законченным прибором и его можно применять для измерения частоты вращения любых валов, например, двигателя моторной лодки, электродвигателей. В качестве датчиков могут использоваться датчики холла, фото и электромагнитные датчики. Достаточно доработать схему входного формирователя импульсов.

Источник: https://remont-avto.uef.ru/stroboskop-tahometr-svoimi-rukami/

Тахометр своими руками – изготовление и применение на практике

Начнем с определений. Что такое тахометр в автомобиле? Это прибор, фиксирующий частоту вращения коленчатого вала в автомобиле.

Разумеется, его применение не ограничено только автотранспортом. Определение количества оборотов в минуту необходимо при работе с различными механизмами:

  • турбина самолета
  • вал корабельной силовой установки
  • генераторы электростанций
  • фрезерные и токарные станки высокой точности
  • буровые установки
  • приборы учета электроэнергии и воды.

Кроме того, приборы для измерения частоты вращения применяются в научно-исследовательской работе.
Любой тахометр состоит из двух частей:

  1. Датчик вращения снимает показания с вала – объекта измерения
  2. Сигнальное устройство либо подает команду на управляющую схему механизма, либо просто выводит данные на стрелочный прибор (цифровое табло).

Принцип работы тахометра достаточно простой

Есть несколько разновидностей конструкции:

Электрическая схема импульсная

Стробоскопический тахометр своими руками

Рядом с валом размещается считывающее устройство – датчик. На нем формируются импульсы, соответствующие скорости вращения вала.

Электронная схема принимает сигналы, и выводит их на устройство отображения. Вместо пары магнит-датчик иногда применяется фото и светодиод.

Тогда на вал устанавливается диск с отверстием, и считывание происходит по вспышкам света.

Преимущество схемы – идеальная точность. Фактически, это цифровое устройство, работающее без погрешностей. Кроме того, такая схема не отбирает мощность у двигателя.

Недостаток – требуется электропитание. Это исключает применение прибора в чисто механических агрегатах.

Электрическая схема генераторного типа

Вал механизма соединен с компактным генератором. В зависимости от скорости вращения, меняется величина вырабатываемого напряжения.

Показания снимаются прибором, работающим по принципу вольтметра. Иное название – тахометр постоянного тока. Главное преимущество – нет необходимости в источнике питания.

Индукционный тахометр

Стробоскопический тахометр своими руками
Популярное:  Установка циркуляционного насоса в системе отопления

Механический тахометр

Стробоскопический тахометр своими руками

Вращению чаши препятствует спиральная пружина (2). Чем выше скорость вращения, тем сильнее отклоняется вал со стрелкой.

Главное достоинство прибора – простота конструкции и отсутствие необходимости в электропитании. Недостатков два: высокая погрешность и сдвинутый нижний предел измерений. При малых оборотах стрелка не отклоняется.

Мы рассмотрим самое востребованное применение тахометров – автомобиль.

Любой механизм вращения (в нашем случае – коленчатый вал автомобиля) имеет предел нагрузки. То есть, силовая структура и подшипники могут выдержать определенную скорость.

Кроме того, остальные механизмы мотора также рассчитаны на предельно допустимую частоту оборотов.

Поэтому установка прибора контроля обязательна для любого современного ДВС. Исключение составляют лишь маломощные моторы для мотоциклов и мопедов.

Для контроля за оборотами коленвала нужен тахометр. В большинстве автомобилей (особенно с механическими КПП), показания прибора дают водителю возможность правильно выбирать момент перехода на следующую ступень.

Изготовление тахометра своими руками на базе Arduino, подробное видео.

В машинах с автоматической трансмиссией, схема подключения тахометра подает сигнал в модуль управления. Электроника не даст мотору выйти за разрешенные пределы.

Если ваш прибор перестал подавать признаки жизни, необходима диагностика. Как проверить тахометр в домашних условиях?

В автомобилях, оснащенных интерфейсом OBD II, проверка осуществляется с помощью сканера. Также электронный тахометр можно проверить с помощью любого генератора импульсов. В качестве эталона используем осциллограф, частотомер, или заведомо исправный прибор.

Механический тахометр проверяется с помощью дрели или шуруповерта. Хорошо, если есть регулятор оборотов. Хвостовик тросика крепится в патроне, корпус прибора жестко закрепляется.

Популярное:  Проверка светодиодов мультиметром, доступные способы

Ремонт тахометра не такая сложная задача, если это не модуль электросхемы. После локализации неисправности, меняется неисправный компонент.

Проводка, контакты датчика, сам датчик, оторванный магнитик на коленвале. Как правило, причина поломки именно в этих деталях.

С механикой еще проще. Надо просто заменить изношенный узел на новый, либо приобретенный на авторынке.

Автомобили с механическими тахометрами, как правило, относятся к сильно подержанным, так что найти б/у запчасть не сложно. Подключение тахометра после ремонта калибровки не требует.

Как сделать тахометр своими руками?

Если восстановить заводской прибор невозможно или дорого, его можно сделать своими руками. Эта же задача часто решается владельцами авто-мото транспорта, на которых тахометр не предусмотрен конструкцией.

Видео простейшего тахометра собранного своими руками из вольтметра, двигателя от старого принтера и диодного моста.

Устанавливать датчик на коленвал достаточно сложно, да и балансировка может нарушиться. Проще воспользоваться любым шкивом, которые вращаются синхронно с мотором.

Если есть отверстие – устанавливаем фото-пару и подключаем ее к электронному тахометру.
Стробоскопический тахометр своими руками
Схему можно купить в виде готового KIT набора (на китайских сайтах электроники), либо собрать на доступной элементной базе.

Есть способы, как подключить самодельный тахометр к системе зажигания. Каждый импульс, подаваемый на высоковольтную свечную катушку, соответствует одному обороту коленвала.

Стробоскопический тахометр своими руками

Если есть сомнения в правильности — посмотрите электрическую схему вашего авто, надо найти проводник от генератора к прибору.

Популярное:  Как склеить любую пластмассу в домашних условиях?

Итог
Изготовить самодельный тахометр достаточно просто, если есть элементарные навыки в электротехнике. При наличии паяльника и готовой схемы – это вопрос пары выходных.

Элементная база на любой вкус: от простенького счетчика импульсов до контроллера, собранного на ARDUINO. Главное понимать, как работает штатный прибор вашего авто.

Пример самодельного тахометра из компьютерной мышки. Все подробности в видео материале.

Для чего он нужен? Если сломался штатный тахометр – ответ очевиден. Если с вашей приборной доской все в порядке – можно добавить стильный элемент к интерьеру автомобиля. Цифровое табло легче считывается, а светодиодная индикация добавит наглядности.

Источник: https://obinstrumente.ru/dlya-doma/poleznye-sovety/taxometr-svoimi-rukami.html

Простой тахометр — своими руками | Мастер

Некоторые автолюбители так привыкают к тахометру, что при замене авто, в котором нет тахометра, чувствуют себя очень неуютно.

Тахометр помогает правильно отрегулировать двигатель, уменьшить расход бензина, увеличить общий ресурс двигателя и приучится правильно водить автомобиль. Существуют готовые покупные тахометры, но цена обычно довольно высока.

Есть сложные и простые схемы автомобильных тахометров, по которым тахометр можно сделать самому. Предлагаю простые схемы тахометров.

 Первый вариант простого тахометра.

 Для измерения числа оборотов используются импульсы прерывателя или напряжение от свечи, так как их частота линейно связана с частотой вращения вала двигателя автомобиля. Можно также обеспечить индуктивную связь с этой цепью, что и сделано в приборе, схема которого представлена на рисунке.

Стробоскопический тахометр своими руками

Основой  схемы этого тахометра является одновибратор (DA1), запуск которого производят импульсы от работающей системы зажигания автомобиля, наведенные в катушке L1.

Входная клемма Х1 может использоваться для настройки тахометра или же для подачи сигнала с прерывателя, как это показано пунктиром.

Для четырехцилиндрового 4-тактного двигателя, имеющего 3000 об/мин, частота прерывания составит 100 Гц, а для 1500 об/мин — 50 Гц, что позволяет просто калибровать прибор по частоте сети. 

Импульсы с выхода 3 микросхемы DA1 поступают на стрелочный индикатор — миллиамперметр РА1, который их интегрирует и показывает действующее напряжение в цепи.

Атак как длительность у всех импульсов на выходе одновибратора одинаковая, напряжение, которое покажет прибор, будет пропорционально частоте образования искр. Шкалу РА1 можно проградуировать в частоте вращения вала (обороты в минуту).

В качестве датчика (катушки L1) можно использовать магнитную головку от магнитофона, расположенную вблизи от высоковольтной катушки, или же потребуется сделать намотку на проводе, идущем от катушки зажигания к распределителю (укрепляется изоляционной лентой).

Для защиты входа микросхемы от высоковольтных выбросов напряжения в качестве VD2 лучше использовать TVS-диод на напряжение ограничения 12 В. В качестве индикатора также можно использовать магнитофонный индикатор уровня сигнала или любой аналогичный прибор. 

Следующая схема простого автомобильного тахометра. Для изготовления тахометра понадобится опять таки  крупный индикатор уровня записи от магнитофона (м476З).

Заметьте, данная схема очень простая, это вроде выпрямителя-интегратора импульсов, которые поступают от прерывателя системы зажигания автомобиля.

Обратите внимание, что высшая отметка шкалы составляет 6000 оборотов в минуту. 

Стробоскопический тахометр своими руками

Этот тахометр можно разместить в любом удобном месте приборной панели автомобиля. Советуем вам воспользоваться индикатором с подсветкой, либо же установите в его корпус небольшую лампочку, что очень положительно скажется на восприятие показаний в темное время суток.

Чтобы наладить прибор  понадобится другой автомобильный тахометр. С его помощью Вы сможете отградуировать изготовленный самодельный автомобильный тахометр.

 Если у Вас нет в наличии другого тахометра, можете воспользоваться генератором прямоугольных импульсов с  изменяемой частотой была в пределах 25 — 200 Гц, и амплитудой 15 — 20 В. 

Еще одна простая схема автомобильного тахометра.

 Прибор предназначен для измерения частоты вращения коленчатого вала карбюраторных двигателей с системой электрооборудования, у которой минус аккумуляторной батареи соединен с корпусом.

Стробоскопический тахометр своими руками

И в завершении, еще одна простая схема  тахометра для  мотоцикла или мопеда. Тахометр предназначен для работы с одноцилиндровым двухтактным двигателем внутреннего сгорания с контактной или бесконтактной системой зажигания и позволяет измерять частоту вращения коленчатого вала до 10000 об/мин. Схема тахометра 

Стробоскопический тахометр своими руками

Принцип действия прибора. В исходном состоянии транзистор VT1 закрыт, а VT2 открыт. В это время левая (по схеме) обкладка конденсатора С 5 соединена через небольшое сопротивление открытого транзистора VT2 с шиной +5 В. Ток в это время через микроамперметр РА1 не идет.

При первом отрицательном полупериоде переменного напряжения, поданного на вход тахометра, транзистор VT1 открывается, а VT2 закрывается. В это время С5 быстро заряжается через микроамперметр РА1, VD3 и R5.При положительном полупериоде входного напряжения VT1 закрывается, а VT2 открывается.

Теперь С5 разряжается через малое сопротивление открытого VT2 и VD4. При следующем отрицательном полупериоде процесс повторяется аналогично.

Подстроечным резистором R6 устанавливается верхняя граница частоты измеряемого сигнала. Номинал конденсатора С5 подбирается в зависимости от типа двигателя.

Чем выше частота оборотов двигателя, тем меньше должна быть емкость конденсатора С5. Правильно собранная схема тахометра наладки не требует.

Надо только подстроечным резистором R6 установить максимальные показания тахометра, открыв дроссельную заслонку двигателя до конца.

Схема подключения тахометра к электрооборудованию мотоцикла или мопеда.

Стробоскопический тахометр своими руками

Источник: https://bazila.net/avto-moto/prostoj-takhometr-svoimi-rukami.html

Ссылка на основную публикацию