Часы на газоразрядных индикаторах своими руками

В данной статье речь пойдет об изготовлении оригинальных и необычных часов. Их необыкновенность заключается в том, что индикация времени осуществляется при помощи цифровых индикаторных ламп. Таких ламп когда-то было выпущено огромное количество, как у нас, так и за рубежом. Использовались они во многих устройствах начиная от часов и заканчивая измерительной техникой.

Но после появления светодиодных индикаторов лампы постепенно вышли из употребления. И вот, благодаря развитию микропроцессорной техники стало возможным создание часов с относительно простой схемой на цифровых индикаторных лампах. Думаю, не лишним будет сказать, что в основном использовались лампы двух типов люминесцентные и газоразрядные.

К преимуществам люминесцентных индикаторов следует отнести низкое рабочее напряжение и наличие нескольких разрядов в одной лампе (хотя среди газоразрядных тоже встречаются такие экземпляры, но найти их значительно сложнее). Но все плюсы данного типа ламп перекрывает один огромный минус – наличие люминофора, который со временем выгорает, и свечение тускнеет или прекращается.

По этой причине нельзя использовать б/у лампы.

Газоразрядные индикаторы избавлены от этого недостатка, т.к. в них светится газовый разряд. По сути, этот тип ламп представляет собой неоновую лампу с несколькими катодами. Благодаря этому срок службы у газоразрядных индикаторов гораздо выше.

Кроме этого одинаково хорошо работают и новые и б/у лампы (а часто б/у работают лучше). Без недостатков все же не обошлось, рабочее напряжение газоразрядных индикаторов больше 100 В. Но решить вопрос с напряжение гораздо проще, чем с выгорающим люминофором.

В интернете такие часы распространены под названием NIXIE CLOCK.

Сами индикаторы выглядят вот так:

Часы на газоразрядных индикаторах своими руками

Итак, на счет конструктивных особенностей вроде все понятно, теперь приступим к проектированию схемы наших часов. Начнем с проектирования высоковольтного источника напряжения. Тут есть два пути. Первый – применить трансформатор со вторичной обмоткой на 110-120 В.

Но такой трансформатор будет либо слишком громоздкий, либо его придется мотать самому, перспектива так себе. Да и напряжение регулировать проблематично. Второй путь – собрать step up преобразователь.

Ну тут уж плюсов побольше будет, во-первых он займет мало места, во-вторых в нем присутствует защита от КЗ и в-третьих можно легко регулировать напряжение на выходе. В общем, есть все, что для счастья надо. Я выбрал второй путь, т.к.

искать трансформатор и обмоточный провод никакого желания не было, да и миниатюрности хотелось. Преобразователь решено было собирать на MC34063, т.к. был опыт работы с ней. Получилась вот такая схема:

Часы на газоразрядных индикаторах своими руками

Сначала она была собрана на макетной плате и показала отличные результаты. Все запустилось сразу и никакой настройки не потребовалось. При питании от 12В. на выходе получилось 175В. В собранном виде блок питания часов выглядит следующим образом:

Часы на газоразрядных индикаторах своими руками

На плату сразу был установлен линейный стабилизатор LM7805 для питания электроники часов и трансформатор.

Следующим этапом разработки было проектирование схемы включения ламп. В принципе управление лампами ничем не отличается от управления семисегментными индикаторами за исключением высокого напряжения. Т.е.

достаточно подать положительное напряжение на анод, и соединить с минусом питания соответствующий катод. На этом этапе требуется решить две задачи: согласование уровней МК (5В) и ламп (170В), и переключение катодов ламп (именно они являются цифрами).

После некоторого времени размышлений и экспериментов была создана вот такая схема для управления анодами ламп:

Часы на газоразрядных индикаторах своими руками

А управление катодами осуществляется очень легко, для этого придумали специальную микросхему К155ИД1. Правда, они давно сняты с производства, как и лампы, но купить их не составляет проблем. Т.е.

для управления катодами требуется всего лишь подключить их к соответствующим выводам микросхемы и подать на вход данные в двоичном формате. Да, чуть не забыл, питается она от 5В., ну очень удобная штуковина. Индикацию было решено сделать динамической т.к.

в противном случае пришлось бы ставить К155ИД1 на каждую лампу, а их будет 6 штук. Общая схема получилась такой:

Часы на газоразрядных индикаторах своими руками

Под каждой лампой я установил яркий светодиод красного цвета свечения, так красивее. В собранном виде плата выглядит вот так:

Часы на газоразрядных индикаторах своими руками

Панельки под лампы найти не удалось, поэтому пришлось импровизировать. В итоге были разобраны старые разъемы, похожие на современные COM, из них были извлечены контакты и после некоторых манипуляций с кусачками и надфелем они были впаяны в плату. Для ИН-17 панельки делать не стал, сделал только для ИН-8.

Самое сложное позади, осталось разработать схему “мозга” часов. Для этого я выбрал микроконтроллер Mega8. Ну а дальше все совсем легко, просто берем и подключаем к нему все так, как нам удобно.

В итоге в схеме часов появились 3 кнопки для управления, микросхема часов реального времени DS1307, цифровой термометр DS18B20, и пара транзисторов для управления подсветкой.

Для удобства анодные ключи подключаем на один порт, в данном случае это порт С. В собранном виде это выглядит вот так:

Часы на газоразрядных индикаторах своими руками Часы на газоразрядных индикаторах своими руками

На плате есть небольшая ошибка, но в приложенных файлах плат она исправлена. Проводами подпаян разъем для прошивки МК, после прошивки устройства его следует отпаять.

Ну а теперь неплохо было бы нарисовать общую схему, сказано – сделано, вот она:

Часы на газоразрядных индикаторах своими руками

А вот так все это выглядит целиком в собранном виде:

Часы на газоразрядных индикаторах своими руками

Теперь осталось всего лишь написать прошивку для микроконтроллера, что и было сделано. Функционал получился следующий:

Отображение времени, даты и температуры. При кратковременном нажатии кнопки MENU происходит смена режима отображения.

1 режим — только время.

2 режим — время 2 мин. дата 10 сек.

3 режим — время 2 мин. температура 10 сек.

4 режим — время 2 мин. дата 10 сек. температура 10 сек.

При удержании включается настройка времени и даты, переход по настройкам по нажатию кнопки MENU

Максимальное количество датчиков DS18B20 – 2 . Если температура не нужна, можно их вообще не ставить, на работу часов это никак не повлияет. Горячего подключения датчико не предусмотрено.

При кратковременном нажатии на кнопку UP включается дата на 2 сек. При удержании включается/выключается подсветка.

  • При кратковременном нажатии на кнопку DOWN включается температура на 2 сек.
  • С 00:00 до 7:00 яркость понижена.
  • Работает все это дело вот так:

К проекту прилагаются исходники прошивки. Код содержит комментарии так что изменить функционал будет не трудно. Программа написана в Eclipse, но код без каких-либо изменений компилируется в AVR Studio. МК работает от внутреннего генератора на частоте 8МГц. Фьюзы выставляются вот так:

  1. А в шестнадцатеричном виде вот так: HIGH: D9, LOW: D4
  2. Также прилагаются платы с исправленными ошибками.

Данные часы работают в течение месяца. Никаких проблем в работе выявлено не было. Стабилизатор LM7805 и транзистор преобразователя едва теплые.

Трансформатор нагревается градусов до 40, поэтому если планируется установка часов в корпус без вентиляционных отверстий, трансформатор придется взять большей мощности. В моих часах он обеспечивает ток в районе 200мА.

Точность хода сильно зависит от примененного кварца на 32,768 КГц. Кварц, купленный в магазине, ставить не желательно. Наилучшие результаты показали кварцы из материнских плат и мобильных телефонов.

Кроме ламп, использованных в моей схеме, можно устанавливать любые другие газоразрядные индикаторы. Для этого придется изменить разводку платы, а для некоторых ламп напряжение повышающего преобразователя и резисторы на анодах.

Внимание: устройство содержит источник высокого напряжения!!! Ток небольшой, но достаточно ощутимый!!! Поэтому при работе с устройством следует соблюдать осторожность!

Один из вариантов сборки данного проекта: Часы в стиле стимпанк на газоразрядных индикаторах

Список радиоэлементов

Обозначение Тип Номинал Количество ПримечаниеМагазинМой блокнотCPU

DD1

IC1

VR1

VT1-VT6

VT7-VT12

VT13, VT14

VT15

VT16

VT17

VDS1

VD1

HL1-HL6

C1

C2, C3-C5, C7, C9, C11

C6, C8

C10

C12

R1-R4, R6-R8

R5, R9-R14, R27-R32, R42

R15, R17, R19, R21, R23, R25, R45

R16, R18, R20, R22, R24, R26

R33, R34

R35-R40

R41

R43, R44

R46

Z1

T1

L1

F1

MENU, UP, DOWN

Газоразрядный индикатор ИН-8 4 Поиск в Utsource В блокнот
Газоразрядный индикатор ИН-17 2 Поиск в Utsource В блокнот
МК AVR 8-бит ATmega8 1 Поиск в Utsource В блокнот
Часы реального времени (RTC) DS1307 1 Поиск в Utsource В блокнот
Датчик температуры DS18B20 2 Поиск в Utsource В блокнот
Микросхема К155ИД1 1 Поиск в Utsource В блокнот
DC/DC импульсный конвертер MC34063A 1 Поиск в Utsource В блокнот
Линейный регулятор LM7805 1 Поиск в Utsource В блокнот
Биполярный транзистор MPSA92 6 Поиск в Utsource В блокнот
Биполярный транзистор MPSA42 6 Поиск в Utsource В блокнот
Биполярный транзистор BC847 2 Поиск в Utsource В блокнот
Биполярный транзистор КТ3102 1 Поиск в Utsource В блокнот
Биполярный транзистор КТ3107А 1 Поиск в Utsource В блокнот
MOSFET-транзистор IRF840 1 Поиск в Utsource В блокнот
Диодный мост 1 Поиск в Utsource В блокнот
Выпрямительный диод HER106 1 Поиск в Utsource В блокнот
Светодиод 6 Поиск в Utsource В блокнот
Электролитический конденсатор 100 мкФ 1 Поиск в Utsource В блокнот
Конденсатор 0.1 мкФ 7 Поиск в Utsource В блокнот
Электролитический конденсатор 1000 мкФ 2 Поиск в Utsource В блокнот
Конденсатор 510 пФ 1 Поиск в Utsource В блокнот
Электролитический конденсатор 4.7 мкФ 400В 1 Поиск в Utsource В блокнот
Резистор 4.7 кОм 7 Поиск в Utsource В блокнот
Резистор 10 кОм 14 Поиск в Utsource В блокнот
Резистор 1 МОм 7 Поиск в Utsource В блокнот
Резистор 13 кОм 6 Поиск в Utsource В блокнот
Резистор 1 кОм 2 Поиск в Utsource В блокнот
Резистор 470 Ом 6 Поиск в Utsource В блокнот
Резистор 0.22 Ом 1 Поиск в Utsource В блокнот
Резистор 330 Ом 2 Поиск в Utsource В блокнот
Резистор 390 кОм 1 Поиск в Utsource В блокнот
Кварц 32768 Гц 1 Поиск в Utsource В блокнот
Элемент питания 3 В 1 CR2032 Поиск в Utsource В блокнот
Трансформатор 220В 9.5В 1 Поиск в Utsource В блокнот
Дроссель 240 мкГн 1 Поиск в Utsource В блокнот
Плавкий предохранитель 220В 0.5А 1 Поиск в Utsource В блокнот
Кнопка замыкающая 3 Поиск в Utsource В блокнот
Добавить все
Читайте также:  Журнальный столик из древесины своими руками

Скачать список элементов (PDF)

Прикрепленные файлы:

  • Clock_IN-8_source.rar (61 Кб)
  • CLOCK_IN-8_Plata.rar (67 Кб)

Источник: https://cxem.net/mc/mc187.php

Часы на газоразрядных индикаторах — травление плат | Каталог самоделок

Вновь приветствую пользователей и выполняю обещание!

Сегодня начинаю выкладывать подробный фотоотчет по изготовлению часов на газоразрядных индикаторах (ГРИ). За основу взят ИН-14.

Часы на газоразрядных индикаторах своими руками

Все манипуляции в этом и следующих постах доступны для человека без опыта, достаточно только иметь немного сноровки. Работу разобью на несколько частей, каждая из которых будет подробно описана мною и выложена в сеть.

Часы на газоразрядных индикаторах своими руками

Приступаем к первому этапу – травление плат. Исследовав литературу, нашел несколько технологий:

  1.  Лазерно-утюжная технология (ЛУТ). Для работы нужны три компонента: лазерный принтер, хлорное железо и утюг. Способ самый простой и дешевый. Минус у него только один – сложно переносить очень тонкие дорожки.
  2.  Фото-резист. Для работы нужны следующие материалы: фото-разист, пленка для принтера, сода кальцинированная и УФ-лампа. Способ позволяет произвести травление плат дома. Минус в том, что стоимость его не из дешевых.
  3.  Реактивно-ионное травление (РИТ). Для работ нужна химически активная плазма, поэтому в домашних условиях не осуществим.

Чаше всего применяют анодное травление. Процесс анодного травления заключается в электролитическом растворении металла и механическом отрывании окислов выделяющимся кислородом.

Вполне объяснимо, что я выбрал метод ЛУТ для травления плат.  Перечень необходимого оборудования и материалов должен выглядеть примерно так:

  1. Хлорное железо. Его купают в радиотоварах по цене 100-150 рублей за банку.
  2. Фольгированный стеклотектолит. Можно найти в магазинах радиотоваров, на радиобарахолках или заводах.
  3. Емкость. Подойдет обычный пищевой контейнер.
  4. Утюг.
  5. Глянцевая бумага. Подойдет самоклеящаяся бумага или однотонная страница глянцевого журнала.
  6. Лазерный принтер.

Далее не долгий поиск в Интернете: добываем рисунок готовой платы и распечатываем его специальной программой (использовал Sprint Layout).

ВАЖНО! Версия для печати должна быть зеркальной, так как при переводе изображения с бумаги на медь оно отобразится обратно.

Часы на газоразрядных индикаторах своими руками

Нужно произвести разметку и отрезать кусок текстолита для платы. Это делают ножовкой по металлу, макетным ножом или, как в моем случае, бормашиной.

Часы на газоразрядных индикаторах своими руками

После этого вырезал из бумаги эскиз будущей платы и приложил рисунком к текстолиту (с фольгированной стороны). Бумага берется с запасом для того, чтобы обернуть текстолит. Закрепляем листок с обратной стороны с помощью скотча для фиксации.

Со стороны рисунка проводим по будущей плате утюгом несколько раз через лист А4. Понадобится не менее 2-х минут интенсивной «глажки» для перевода тонера на медь.

Заготовку подставляем под струю холодной воды и легко снимаем бумажный слой (мокрая бумага должна свободно отходить сама). Если нагрев поверхности был недостаточным, то могут отойти небольшие кусочки тонера. Их дорисовываем дешевым лаком для ногтей. В итоге заготовка для платы должна имеет следующий вид:

Часы на газоразрядных индикаторах своими руками

В приготовленной емкости готовим раствор хлорного железа и воды. Лучше использовать для этих целей горячую воду, это увеличит скорость реакции. От кипятка лучше отказаться, так как высокая температура деформирует плату. Готовая жидкость должна иметь цвет чая средней заварки. Плату помещаем в раствор и ждем, когда лишняя фольга полностью растворится.

Если иногда помешивать раствор в емкости, то скорость реакции также увеличится. Для кожи рук хлорное железо не опасно, но пальцы могут окраситься.

  • Часы на газоразрядных индикаторах своими руками
  • Часы на газоразрядных индикаторах своими руками
  • Для придания большей наглядности процессу, поместил плату в раствор частично. Какие должны произойти изменения видно на фото:
  • Часы на газоразрядных индикаторах своими руками
  • Часы на газоразрядных индикаторах своими руками
  • Часы на газоразрядных индикаторах своими руками

Лишняя медь растворяется в составе примерно через 40 минут. После чего процесс травления можно считать завершенным. Осталось только сделать несколько отверстий. Проводим шилом разметку и сверлим дрелью небольшие дырки. Инструмент должен работать с высокими оборотами, чтобы сверло не съезжало. Результат работы должен выглядеть примерно так:

Второй этап изготовления часов на ГРИ – пайка компонентов. Об этом буду рассказывать в следующем своем посте.

Скачиваем:

  1.  Плата для травления
  2.  Программа Sprint Layout).

Источник: https://volt-index.ru/electronika-dlya-nachinayushih/chasyi-na-gazorazryadnyih-indikatorah-travlenie-plat.html

Часы "Микро"

Часы на газоразрядных индикаторах своими руками
Тимофей Носов

  • Лампа: ИН-16
  • Схема: есть ( PIC16F1936)
  • Плата:есть (Sprint-Layout)  
  • Прошивка:есть
  • Исходник:нет
  • Описание: eсть

Особенности:  наручные часы.
 Схема:

Часы на газоразрядных индикаторах своими руками
 

Лампы для часов на газоразрядных индикаторах очень дефицитны и дороги. В этом проекте часы собраны на двух лампах ИН-16, а текущий режим (часы/минуты) отображается светодиодами. Простая схема с автономным питанием позволяет сделать карманные (наручные) часы.

Идея автономных (наручных) часов с газоразрядными лампами не нова и наибольшую известность получили часы «Неоника» и «Хронометр ИН-16». С точки зрения компактности и экономии было принято решение сделать часы на двух лампах.

  1. Схема обеспечивает поддержание хода при напряжении от 2,0В.
  2. Стабильная генерация высокого напряжения от 2,4В.
  3. Максимальное рабочее напряжение 5,5В.

Используется типовой литий-ионный аккумулятор 3,7В * 250 мАч. Для зарядки применена микросхема TP4056. Заряд прекращается при достижении напряжения на аккумуляторе 4,2В.

Геометрия платы представляет усеченный круг диаметром 50 мм. Высота собранных плат 15,77 мм. Платы изготовлены по технологии ЛУТ и доступны для повторения. Использован двухсторонний текстолит 0,75 мм (можно другой толщины). Одна из сторон платы сплошной полигон минуса питания. Для защиты от травящего раствора перед травлением на плату на сторону с полигоном наклеивается обычный скотч.

Часы на газоразрядных индикаторах своими руками

Часы на газоразрядных индикаторах своими рукамиЧасы на газоразрядных индикаторах своими рукамиЧасы на газоразрядных индикаторах своими руками

 Часы на газоразрядных индикаторах своими руками

Вывода компонентов в отверстиях платы, которые не должны соединяться с полигоном (общим минусом), имеют доработанные отверстия. Доработка заключается в зенковке (снятие фольги сверлом большего диаметра; руками). Вывода СМД компонентов и выводных конденсаторов соединены с полигоном тонкой перемычкой (жилкой из многожильного провода).

Часы на газоразрядных индикаторах своими руками

Перед пайкой ламп вставить аккумулятор между лампами и убедиться, что для аккумулятора достаточный зазор. Если аккумулятор вставляется с усилием или болтается – поменяйте лампы местами.

Плата с лампами и плата управления соединена угловыми перемычками. С точки зрения технологи, если будет спрос, в будущем фабричные платы предполагается соединять путём спаивания на двух платах металлизированных квадратных пяточков, т.е. без перемычек.

Часы на газоразрядных индикаторах своими руками

Наиболее подходящие по цвету свечения светодиоды YL-W83N3N с длиной волны 610 нМ. Ток через светодиоды в схеме значительно меньше номинального, т.к. с током 10 мА светодиоды слепят. Впрочем, могут быть любые подходящие по габаритам светодиоды, но для экономии энергии лучше использовать суперяркие.

Катушка индуктивности (дроссель) Bourns RLB0914-102KL, 1000 мкГн.

Высковольтный выпрямительный диод типа Super Fast Rectifiers – SF18.

Высоковольтный конденсатор с низким low esr – 2,2 мкФ х 250В, размер не более 6,3х11.

Полевой транзистор с управлением типа «Logic» и параметром Gate Threshold Voltage менее 3В. Например – FQU4N20L, FQU5N20L, FQU7N20L, FQU10N20L, FQU12N20L, IRLU210A, IRLU230A. Плата разведена под транзистор в корпусе I-PAK, но допустимо использовать в корпусе D-PAK.

Используется угловая тактовая кнопка C-0206 (TS-A3PV-130). Алгоритм работы и настройки

Часы на газоразрядных индикаторах своими руками
 Для тестирования аккумулятора на продолжительность работы была использована тестовая прошивка, в которой лампы постоянно светились, поочередно переключая часы-минуты. Для регистрации  использовался USB АЦП (скачать лог-файл). График разряда практически линеен с 4,2В до 3,5В. Это участок времени занял 130 мин или 7800 сек. Результат радует, учитывая что на показ времени требуется 2 сек, то можно будет прогнозировать 3900 включений. На графике на уровне 2,39В сработала встроенная в аккумулятор схема защиты от переразряда.

На основании этих данных построен алгоритм оценки напряжения на аккумуляторе и вывод значения в условных единицах от 50 до 00. Ниже 3,5В блокируется вывод времени на лампы и после нажатия кнопки светодиоды вспыхивают 3 раза. Оставшееся напряжение в аккумуляторе используется для поддержания хода часов TP4056.

Продолжительность зарядки составила 1ч 55 мин. Заряжалось от USB разъема компьютера. Зарядный ток в TP4056 определяется сопротивлением на выв.2. По документации зависимость номинала сопротивления и тока заряда можно рассчитать по формуле, но нагляднее воспользоваться табличкой (у нас 10 кОм):

График заряда коррелируется с графиком из документации на TP4056:

В процессе зарядки светодиод «БАТ» светится. По окончанию зарядки светодиод выключается. Без аккумулятора с подключенной зарядкой светодиод мерцает, лампы зажигаются через раз. В процессе зарядки пользоваться часами можно. Если аккумулятора нет, но нужно проверить работу часов –  питание подавать на плату на контакты подключения аккумулятора.

После подключения зарядного устройства часы можно ввести в режим непрерывного показа времени; достаточно нажать и отпустить кнопку. Для вывода часов из режима непрерывного показа времени переподключаем зарядку. Разумеется, в момент непрерывного показа времени увеличивается время зарядки аккумулятора. Рекомендую к прочтению отличную статью по литий-ионным аккумуляторам.

Приоритетной целью при проектировании было увеличение автономности, а говоря конкретнее – уменьшение тока потребления во всех режимах работы.

Выбрана микросхема часов реального времени M41T81, т.к. в отличии от DS1307 и прочих микросхем она функционирует от 2,0В (до 5,5В) с током потребления от батарейки 0,6 мкА (мультиметром SANWA PC7000 фактические замеры 1,8 мкА).

Читайте также:  Стеллаж из фанеры своими руками

Также был план «Б», по которому планировалось не использовать M41T81, а использовать только часовой кварц с прямым подключением к микроконтроллеру. И рисунок платы позволяет это сделать, т.к. линии микроконтроллера RC0 и RC1 предназначены для подключения часового кварца 32768Гц.

Сейчас в схеме с M41T81 ток потребления микроконтроллера 36 мкА. Разумеется, этот ток мал, но между 36 мкА и 1,8 мкА гигантская пропасть. Теряется смысл использования M41T81 и это доказано ранее в проекте «Малыш ИН-16».

Потери тока происходят во внутренней подтяжке на линии RB3, которая нужна для работы кнопки. Можно было бы попробовать сделать внешнюю подтяжку, но принципиально ток потребления не изменился бы.

Решением снижения тока может стать полная обесточка микроконтроллера механическим размыкателем. При этом питание на M41T81 по линии батарейки должно оставаться. Например, конструктивно это видится как концевой выключатель на открытие крышки на манер карманных часов «Брегет».

А теперь ответим на вопрос – а каков сценарий использования часов? Предполагается, что часы будут включать, чтобы посмотреть время. И ток потребления в момент свечения ламп несопоставимо велик по сравнению с режимом ожидания.

Есть ли смысл ставить дорогую и не распространённую M41T81, нужно ли усложнять конструкцию дополнительным размыкателем питания. Ответ очевиден – смысла нет и не нужно усложнять. Но, честно говоря, мне уже не интересно переделывать.

И если вы внимательно дочитали статью до этого места, то скажем, что M41T81 решено оставить, т.к.

большинство сборщиков часов считают, что микросхемы часов реального времени это благо с модной, но бредовой заявкой о «суперточности».

В данном случае потребление тока в моменты работы и ожидания несопоставимы, а точность, как известно, определяется точностью часового кварца с параметром 20 ppm и менее.

Первоисточник.

Архив проекта.

Upd 2016/10/20:

 От Gioco (РадиоКот) / Алексей !

          Хочу представить вам свое виденье замечательного проекта Тимофея Носова ручных часов на индикаторах ИН-16.

Хочу сказать стразу все что будет здесь рассказано, описано и показано это всего лишь мое личное виденье развитие этого проекта и к тому же это черновой вариант но вполне рабочий.

Для начала стояла задача собрать часы не просто красивые но удобные в ношении и использовании, также стояла задача сделать это из доступных материалов и доступными средства.

          Все началось с того что я полностью собрал плату часов по описанию Тимофея. Внесены были минимальные изменения, в основном это подгонка платы под имеющиеся в наличии  детали. Сборка и настройка была сделана по описанию автора часов. Скажу только одно, никаких трудностей это не вызвало кроме поиска и покупки некоторых труднодоступных для меня деталей.

Итак, плата была собрана и имеет вид:

          Дальше были долгие поиски по инету как сделать корпус, то что было предложена на некоторых сайтах вполне красиво но сложно. Нужен знакомый и толковый токарь и дорогой материал. Поэтому был взят лист бумаги и начал чертить как я это вижу.

После долгих раздумий было решено использовать дешевую и доступную технологию 3D печати. Нашел в интернете объявления по печати, созвонился. Оказалось все просто, я высылаю чертеж на бумаги, они делают 3D модель, показывают ее и если все меня устраивает печатают и высылают почтой.

(скажу сразу 3D файла  модели у меня нет, фирма которая печатал не высылает ее!!!)

          Первая версия была очень громоздкая и ужасная (извините не могу найти ее чтобы показать). Сделав определенные выводы для себя я понял необходимо сделать чтобы часы были не только красивые но и эргономичные и удобные. После этого был сделан второй вариант корпуса.

        

         Основной проблемой было как закрепить стекло ведь корпус и так достаточно толстый 19мм. Тогда я понял, что без металла не обойдется! Многие скажут а как же клей и все такое прочие. Не прокатит это часы для постоянной носки а не для того чтобы лежали на полке.

           В этом корпусе предполагалось использовать четыре латунных пластин для крепления стекла, четырьмя болтами  под шестигранник, а снизу ими же крепились бы пластины для крепления ремня. Думаю на фото видно идея.

После того как я покрутил их в руках и немного подумал в итоге родилась идея третьего варианта корпуса. Нашлось решение как красиво закрепить стекло с помощью  8 болтов под шестигранник.

       Итак, был нарисован и заказан третий вариант корпуса, заказаны из Китая болты М2 для крепления стекла и М3 для крепления ремня а также метчики для ник. Вечерок за бор машинкой и крепление для ремня готово.

Вот результат того что вышло у меня:

          Это не конечный вариант все будет еще дорабатываться. В планах заказать заводскую печатную плату, красиво и аккуратно оформленную, а также сделать ее в диаметре 48,5 мм. Это нудно для того чтобы избавиться от латунных лепестков которые держат стекло. Идея была чтобы стекло держалось за счет шляпок болтиков.

А это просто фото как они смотрятся на руке:

         В конце хочу добавить что часы ношу уже две недели. Вполне удобно,  особенно шокируют людей, которые их видят когда смотрю время.)))) Уже есть мысли насчет следующей версии корпуса, но об этом будет другая статья.

 Всем спасибо за внимание и автору спасибо!!!   Cкрины 3Д 🙂

Upd 2016/10/20:

Создание корпуса (продолжение от Gioco (РадиоКот) / Алексей).

Всем
доброго дня. Как и говорил ранее, хочу
представить следующий, доработанный
вариант часов. Походив несколько месяцев
с ними, я понял где и что надо доработать.

Самая
важная для меня задача это сделать
красивую и аккуратную печатную плату,
так как часы будут открытыми. Я доработал
немного плату автора и занялся поисками,
где ее можно изготовить.

Через множество
друзей мне ее сделали такой как я и хотел
(хотя сейчас такое можно и в Китае
заказать!!). главными условиями были:
двухсторонняя плата, тонкий текстолит
и черная маска.

Вот что получилось в
итоге:

Затем
был немного доработан под готовую плату
корпус. Учтены все недочеты из предыдущей
версии. В итоге корпус получился 17мм
толщиной, это с учетом, что 13мм толщина
самих лам и 1мм толщина стекла. Думаю
это неплохой результат. Было немного
доработано крепление стекла, теперь
это только 8 болтов под шестигранник,
без латуни. И было немного изменено
крепление под ремень.

  Так
же, немного подумав, я отказался от
разъёма USB!!! Да с одной стороны он универсальный,
но с другой очень геморройно его точно
подогнать под корпус. Я сделал по другому,
с торца часов закрутил два латунных
болтика с М3 и вывел их на плату. Часы
будут заряжаться через станцию зарядки.

 

Последнем
что осталось сделать это хороший и
надежный ремень. Было много вариантов
от широкого до тонкого. В итоге я
остановился на ширине в 30 мм.

Так как
застёжки на такой ремень трудно найти
автор, который мне его делал, предложил
застежки штырькового типа. В итоге на
мой взгляд ремень получился просто
супер.

!!! Ремень не покупался готовым а
изготавливался именно под эти часы и
крепление!!!

В
итоге получились вот такие часы. ДУМАЮ
И ЭТО НЕ КОНЕЧНЫЙ ВАРИАНТ))))) есть еще
много задумок в голове.

 

Источник: http://robocua.blogspot.com/2016/08/blog-post.html

Часы на газоразрядных индикаторах

Часы на газоразрядных индикаторах своими руками Часы на газоразрядных индикаторах в последнее время стали весьма популярными среди радиолюбителей, такие часы привлекают внимание теплым ламповым свечением, желто-оранжевого цвета. В сети можно найти множество различных вариантов и исполнений, вот и я решил разработать и собрать свой вариант часов, с возможностью синхронизации времени по спутникам GPS.

В последние годы появилось много желающих, которые хотят собрать или приобрести часы на газоразрядных индикаторах, это соответственно вызывает большой спрос на индикаторы, вследствие чего самые востребованные из них заметно подорожали, а крупные индикаторы вовсе имеют заоблачную цену.

Газоразрядный индикатор представляет собой лампу с электродами (катодами), наполненную инертным газом неоном.

Катоды могут быть выполнены в виде различных знаков, обычно цифр от 0 до 9, которые располагаются друг за другом стопкой, то есть на разной глубине.

При подаче напряжения между анодом и катодом величиной примерно 180 В, вблизи катода по его периметру возникает оранжево-желтое свечение газа (тлеющий разряд). Обычно для поддержания свечения требуется меньшее напряжение, чем для зажигания разряда.

Пожалуй, самый популярный газоразрядный индикатор для сборки часов, это ИН-14. Для начала я решил собрать часы на индикаторах ИН-12, потому что мне удалось приобрести их относительно дешево. Часы без особого труда можно переделать под ИН-14, в дальнейшем я выложу печатную плату для них.

Схема часов на газоразрядных индикаторах

Часы собраны на микроконтроллере PIC16F876A, для которого я написал программу на языке СИ, ниже представлена схема часов на газоразрядных индикаторах: Часы на газоразрядных индикаторах своими руками Для питания индикаторов необходимо высокое напряжение порядка 180-200 В, на схеме имеется стандартный DC-DC преобразователь, собранный на полевом транзисторе VT3, диоде VD1, катушке индуктивности L1 и сглаживающем конденсаторе C3, ШИМ сигнал для транзистора формирует микроконтроллер. Данный преобразователь выдает нестабилизированное напряжение, величина которого зависит от нагрузки. Этого вполне достаточно для питания индикаторов, стабилизированное напряжение не обязательно. Высокое напряжение подается на аноды индикаторов с помощью высоковольтных оптопар U1-U5, через балластный резистор R15, который ограничивает ток через катоды индикаторов. Управление катодами осуществляется при помощи отечественного высоковольтного дешифратора К155ИД1. Для отображения цифр используется метод динамической индикации, с частотой 70 Гц. Яркость индикаторов можно регулировать путем изменения длительности свечения. В общем, эта стандартная и устоявшаяся схема управления газоразрядными индикаторами.

Читайте также:  Как сделать простой лобзиковый станок своими руками

Для отсчета времени используется модуль часов реального времени DS3231, о котором я писал отдельную статью. Светодиоды HL2-HL5 установлены для подсветки индикаторов. В качестве разделителя часов и минут установлен неоновый индикатор ИНС-1.

Для возможности синхронизации времени, я добавил в схему GPS модуль GY-NEO6MV2 фирмы Ublox, на сайте имеется подробная статья про этот модуль. Питание на модуль подается через полевой транзистор VT4, который управляется от микроконтроллера.

Для воспроизведения звука будильника, установлен зуммер HA1 с встроенным генератором. Для настройки часов установлены 3 кнопки: SB1 “Ввод”, SB2 “+”и SB3 “-”.

Выходное напряжение DC-DC преобразователя зависит от многих факторов: это частота и коэффициент заполнения ШИМ сигнала, индуктивность катушки L1, ток нагрузки. По умолчанию частота равна 26,3 кГц, коэффициент заполнения 90%.

Эти параметры можно изменить, записав другие значение в EEPROM память, перед программированием микроконтроллера (подробнее про настройку будет сказано ниже в статье). Увеличение частоты, а также уменьшение коэффициента заполнения снижают выходное напряжение.

Уменьшать коэффициент заполнения менее 70% лучше не стоит, при этом наблюдается провал в выходном напряжении. Катушка L1 обладает индуктивностью 470 мкГн, уменьшение индуктивности увеличивает выходное напряжение.

На холостом ходу без подключенных индикаторов преобразователь выдает около 250 В, при этом в качестве нагрузки выступает только резистор R2 сопротивлением 300 кОм. При подключении газоразрядного индикатора напряжение уменьшается примерно до 153В. При этом балластный резистор R15 ограничивает ток через катод индикатора на уровне 1,7 мА.

Если потребуется настройка преобразователя, то коэффициент заполнения ШИМ сигнала лучше не менять, а регулировать выходное напряжение, изменяя частоту сигнала, или подобрать катушку с другой индуктивностью.

В общем, настройка заключается в установке тока через катод индикатора на уровне 1,4 – 2 мА, при этом выходное напряжение преобразователя с подключенным индикатором, должно быть не менее 150В.

Ток задается балластным резистором R15, также можно подбирать номинал нагрузочного резистора R13, он также влияет на выходное напряжение.

Все детали смонтированы на двух печатных платах, индикаторы на односторонней плате, остальные элементы на двухсторонней плате. Платы соединяются между собой при помощи разъемов. Разъем питания, кнопки, зуммер, модуль часов и модуль GPS (либо гнездо 3,5 мм) монтируются с задней стороны двухсторонней платы.

Из-за отсутствия металлизации, в отверстиях, где проводники подходят с обеих сторон, я прокладывал тонкий луженый провод и пропаивал совместно с выводами элементов.

Перед монтажом модуля часов, из него необходимо выпаять резистор, подающий внешнее питание (5В) на батарейку (3В), иначе батарейка выйдет из-строя, также по желанию можно выпаять светодиод и микросхему памяти.

Зуммер HA1 должен быть с встроенным генератором. Отечественный дешифратор DD2 можно заменить зарубежным аналогом SN74141N, полевой транзистор VT4 можно заменить на IRLML2244, IRLML6402 и др., полевой транзистор VT3 на IRF840, высокочастотный диод VD1 на HER107, HER108, STTH110, UF4007. Транзисторы VT1, VT2 можно заменить на любые аналогичные.

Часы на газоразрядных индикаторах своими руками

Настройка часов на газоразрядных индикаторах

Для питания часов я использовал блок питания на 5В, средний потребляемый ток 0,12А, в режиме синхронизации времени до 0,2А.

При первом включении, индикатор разделитель часов и минут мигает с частотой 2Гц, это означает, что время не установлено или не синхронизировано.

Время можно установить вручную или синхронизировать по спутникам GPS, после чего светодиод будет мигать с нормальной частотой 1Гц.

Во время отображения текущего времени, кнопки “+” и “–” регулируют яркость светодиодов HL2-HL5 (подсветка индикаторов) от 0 до 100%, всего 10 уровней.

Для входа в меню настройки параметров, нужно одновременно нажать кнопки “+” и “–”, на индикаторах высветятся цифры [10.01], первая цифра слева – номер параметра, последние две или одна мигающая цифра справа – значение параметра.

Первый параметр это часовой пояс, который нужен для корректировки значения часов во время синхронизации по GPS, так как модуль получает всемирное координированное время UTC.

Значение часового пояса можно задать кнопками “+” и “–”, в пределах от –12 до +12 (по умолчанию –1 либо 0). Если разделитель светится, то число отрицательное, и наоборот.

Для перехода к следующему параметру нужно нажать кнопку “Ввод” (короткое или длительное нажатие).

Второй параметр: режим синхронизации времени по GPS, по умолчанию синхронизация отключена, на индикаторах отображаются цифры [2000]. Кнопками “+” и “–” можно выбрать значение от 0 до 4.

Цифре 1 соответствует период синхронизации каждый день, 2 – каждую неделю, 3 – каждые 2 недели, 4 – каждый месяц, 0 – автоматическая синхронизация отключена. По времени, синхронизация происходит в 15.00 по определенным числам месяца, для еженедельного периода это 1, 8, 15, 22 число.

Для периода 1 раз в 2 недели это 1 и 15 число, если 1 раз в месяц то 1 число.

Третий параметр – регулировка яркости газоразрядных индикаторов, по умолчанию установлена максимальная яркость, на индикаторах отображаются цифры [3020]. Кнопками “+” и “–” можно задать требуемую яркость в пределах от 1 до 20. Также предусмотрен режим ночной яркости от 22:00 до 08:00, который можно задать через EEPROM память микроконтроллера.

Далее после нажатия кнопки “Ввод”, следует настройка даты и времени, сначала настройка года, на индикаторах отображаются цифры [2000]. Затем следует настройка даты, на индикаторах отображаются слева число месяца, справа номер месяца [07.05].

Короткое нажатие кнопки “Ввод” переключает редактирование между числом и номером месяца, длительное нажатие выполняет переход к очередному параметру. Следующий параметр – день недели, можно задать значения от 1 до 7, цифра 1 соответствует Понедельнику, 2 – Вторник и т.д.

И наконец, в последнюю очередь выполняется настройка времени, часов и минут.

Из меню настройки параметров можно выйти в любой момент, для этого нужно удерживать кнопку “Ввод” и одновременно нажать кнопку “+” либо “–”, также имеется автоматический выход из любого меню по бездействию в течение 2-х минут.

Описанные в этой статье часы на газоразрядных индикаторах отличаются от остальных тем, что время можно не настраивать, эти данные можно получить по GPS.

Кроме автоматической синхронизации, имеется возможность запуска синхронизации в любой момент, для этого нужно удерживать кнопку “+”.

На индикаторах высветятся мигающие цифры [0000], по мере поиска спутников все цифры сменятся на [1111], после чего примерно через 20 секунд произойдет обновление времени, индикатор разделитель при этом начнет мигать с частотой 1Гц. Во время синхронизации дата не обновляется.

Если в течение 15 минут GPS модуль не поймает сигнал от спутников, индикатор разделитель будет мигать с частотой 2Гц, индицируя неудачную синхронизацию времени. Удерживание кнопки “–” во время синхронизации, принудительно завершит процедуру обновления времени.

GPS модуль GY-NEO6MV2 выпускается в двух вариантах: это синяя плата с большой антенной и красная плата с маленькой антенной. С маленькой антенной модуль хуже ловит сигнал от спутников, нежели с большой антенной.

Я разработал печатные платы под оба варианта. Для улучшения приема и надежной синхронизации, GPS модуль можно отдельно закрепить на окне и соединить с часами при помощи кабеля.

Для этого варианта на печатных платах предусмотрено место под гнездо PJ-358 (3,5 мм).

Для связи с микроконтроллером, GPS модуль должен иметь следующие настройки порта: скорость передачи 9600 бит в секунду, 8 бит данных, 1 стоповый бит. Обычно модуль поставляется с указанными настройками, если это не так, нужно изменить параметры порта через программу u-center, подключив модуль к компьютеру через USB-UART переходник.

Для настройки будильника нужно удерживать кнопку “Ввод”, на индикаторах высветится время будильника, по умолчанию 08:00. Редактирование значений часов и минут аналогично настройке времени. Далее после длительного нажатия кнопки “Ввод” следует настройка активации будильника по дням недели.

На индикаторах высветятся цифры [1000], первая цифра слева – указывает на день недели, последняя мигающая цифра справа отображает состояние будильника: 0 – выключен, 1 –включен. Кнопки “+” и “–” меняют значение. Короткое нажатие кнопки “Ввод” переключает дни недели.

Соответственно можно выбрать дни недели, по которым будет срабатывать будильник. Для завершения настройки нужно удерживать кнопку “Ввод”. Из меню будильника можно выйти в любой момент, таким же способом, как и для меню настройки параметров.

Сигнал будильника звучит 5 минут, его можно выключить нажатием любой кнопки.

  • Все настройки сохраняются в энергонезависимой памяти (EEPROM) микроконтроллера.
  • Короткими нажатиями кнопки “Ввод” можно посмотреть соответственно дату, год, и перейти к отображению текущего значения минут и секунд.
  • При потере связи с часами DS3231, на индикаторах высветится код ошибки 3231.
  • В следующей таблице представлены дополнительные настройки часов на газоразрядных индикаторах, если потребуется изменить параметр, то перед программированием микроконтроллера необходимо записать в соответствующую ячейку EEPROM новое значение параметра.
Адрес ячейки EEPROM Описание Пределы значений Значение по умолчанию
0x01 Частота ШИМ сигнала. Формула расчета Fшим = 1000/(X+1), кГц 31

Источник: https://radiolaba.ru/microcotrollers/chasy-na-gazorazryadnyh-indikatorah.html

Ссылка на основную публикацию