Простой лабораторный блок питания своими руками

Приветствую, Самоделкины!

Сегодня мы с вами соберем мощнейший лабораторный блок питания. На данный момент он является одним из самых мощных на YouTube.

Все началось с постройки водородного генератора. Для запитки пластин автору понадобился мощный блок питания. Покупать готовый блок типа DPS5020 не наш случай, да и бюджет не позволял. Спустя некоторое время схема была найдена.

Позже выяснилось, что этот блок питания настолько универсален, что его можно использовать абсолютно везде: в гальванике, электролизе и просто для запитки различных схем. Сразу пробежимся по параметрам. Входное напряжение от 190 до 240 вольт, выходное напряжение — регулируемое от 0 до 35 В. Выходной номинальный ток 25А, пиковый — свыше 30А.

Также, блок имеет автоматическое активное охлаждение в виде кулера и ограничения по току, она же защита от короткого замыкания.

Теперь, что касается самого устройства. На фото вы можете видеть силовые элементы.

От одного взгляда на них захватывает дух, но свой рассказ хотелось бы начать совсем не со схем, а непосредственно с того, от чего приходилось отталкиваться, принимая то или иное решение. Итак, в первую очередь, конструкция ограничена корпусом.

Это было очень большим препятствием в построении печатных плат и размещении компонентов. Корпус был куплен самый большой, но все равно его размеры для такого количества электроники малы. Второе препятствие — это размер радиатора.

Хорошо, что они нашлись в точности, подходящие под корпус.

Как видим радиаторов тут два, но входе построения объединим в один. Помимо радиатора, в корпусе нужно установить силовой трансформатор, шунт и высоковольтные конденсаторы. Они никак не влазили на плату, пришлось их вынести за пределы. Шунт имеет небольшие размеры, его можно положить на дно. Силовой трансформатор был в наличии только таких размеров:

Остальные раскупили. Его габаритная мощность 3 кВт. Это конечно намного больше чем нужно. Теперь можно переходить к рассмотрению схем и печаток. В первую очередь рассмотрим блок-схему устройства, так будет легче ориентироваться.

Состоит она из блока питания, dc-dc преобразователя, системы плавного пуска и различной периферии. Все блоки не зависят друг от друга, например, вместо блока питания можно заказать готовый.

Но мы рассмотрим вариант как сделать все своими руками, а вам уже решать, что купить, а что делать также.

Стоит отметить, что необходимо установить предохранители между силовыми блоками, так как при выходе из строя одного элемента, он потащит за собой в могилу остальную схему, а это вылетит вам в копеечку.

Предохранители на 25 и 30А в самый раз, так как это номинальный ток, а выдержать они могут на пару ампер больше.

Теперь по порядку о каждом блоке. Блок питания построен на всеми любимой ir2153.

Также в схему добавлен умощненный стабилизатор напряжения для питания микросхемы. Он запитан от вторичной обмотки трансформатора, параметры обмоток рассмотрим при намотке. Все остальное — это стандартная схема блока питания.

Следующий элемент схемы — это плавный пуск.

Установить его необходимо для ограничения тока зарядки конденсаторов, чтобы не спалить диодный мост.

Теперь самая важная часть блока – dc-dc преобразователь.

Его устройство очень сложное, поэтому углубляться в работу не будем, если интересно подробнее узнать про схему, то изучите самостоятельно.

Настало время переходить к печатным платам. Вначале рассмотрим плату блока питания.

На нее не вместились ни конденсаторы, ни трансформатор, поэтому на плате имеются отверстия для их подключения. Размеры фильтрующего конденсатора подбирайте под себя, так как они бывают разных диаметров.

Далее рассмотрим плату преобразователя. Тут тоже можно немного подогнать размещение элементов. Автору пришлось сместить второй выходной конденсатор вверх, так как он не вмещался. Так же можете добавить еще перемычку, это уже на ваше усмотрение.

Теперь переходим к травлению платы.

Думаю, тут нет ничего сложного.

Осталось запаять схемы и можно проводить тесты. В первую очередь запаиваем плату блока питания, но только высоковольтную часть, чтобы проверить не накосячили ли мы во время разводки. Первое включение как всегда через лампу накаливания.

Как видим, при подключении лампочки, она загорелась, а это значит, что схема без ошибок. Отлично, можно установить элементы выходной цепи, а как известно, туда нужен дроссель. Его придется изготовить самостоятельно. В качестве сердечника используем вот такое желтое кольцо от компьютерного блока питания:

С него необходимо удалить штатные обмотки и намотать свою, проводом 0,8 мм сложенным в две жилы, количество витков 18-20.

Заодно можем намотать дросселя для dc-dc преобразователя. Материалом для намотки являются вот такие кольца из порошкового железа.

В отсутствие такого, можно применить тот же материал, что и в первом дросселе. Одной из важных задач является соблюдение одинаковых параметров для обоих дросселей, так как они будут работать в параллели. Провод тот же – 0,8 мм, количество витков 19.

После намотки, проверяем параметры.

Они в принципе совпадают. Далее запаиваем плату dc-dc преобразователя. С этим проблем возникнуть не должно, так как номиналы подписаны. Тут все по классике, сначала пассивные компоненты, потом активные и в последнюю очередь – микросхемы.

Настало время заняться подготовкой радиатора и корпуса. Радиаторы соединим между собой двумя пластинками вот таким образом:

На словах это все хорошо, надо бы заняться делом. Сверлим отверстия под силовые элементы, нарезаем резьбу.

  • Сам же корпус тоже немного подправим, отломав лишние выступы и перегородки.
  • Когда все готово, приступаем к креплению деталей на поверхность радиатора, но так как фланцы активных элементов имеют контакт с одним из выводов, то необходимо их изолировать от корпуса подложками и шайбами.
  • Крепить будем на винты м3, а для лучшей термо передачи воспользуемся не высыхающей термопастой.
  • Когда разместили на радиаторе все греющиеся части, запаиваем на плату преобразователя ранее не установленные элементы, а также припаиваем провода для резисторов и светодиодов.

Теперь можно тестировать плату. Для этого подадим напряжение от лабораторного блока питания в районе 25-30В. Проведем быстрый тест.

Как видим, при подключении лампы идет регулировка по напряжению, а также ограничения по току. Отлично! И эта плата тоже без косяков.

Тут же можно настроить температуру срабатывания кулера. С помощью подстроечного резистора производим калибровку.

Сам же термистор нужно закрепить на радиаторе. Осталось намотать трансформатор для блока питания на вот таком гигантском сердечнике:

Перед намоткой необходимо рассчитать обмотки. Воспользуемся специальной программой (ссылку на нее найдете в описании под видеороликом автора, пройдя по ссылке «Источник»).

В программе указываем размер сердечника, частоту преобразования (в данном случае 40 кГц). Также указываем количество вторичных обмоток и их мощность. Силовая обмотка на 1200 Вт, остальные на 10 Вт.

Также нужно указать каким проводом будут мотаться обмотки, жмем кнопку «Рассчитать», тут нет ничего сложного, думаю разберетесь.

Посчитали параметры обмоток и начинаем изготовление. Первичка в один слой, вторичка в два слоя с отводом от середины.

Изолируем все с помощью термоскотча. Тут по сути стандартная намотка импульсника.

Все готово к установке в корпус, осталось разместить периферийные элементы на лицевой стороне таким образом:

Сделать это можно довольно просто, лобзиком и дрелью.

Теперь самая трудная часть — разместить все внутри корпуса. В первую очередь соединяем два радиатора в один и закрепляем его.

Соединение силовых линий будем проводить вот такой 2-ух миллиметровой жилой и проводом сечением 2,5 квадрата.

Также возникли некие проблемы с тем, что радиатор занимает всю заднюю крышку, и там невозможно вывести провод. Поэтому выводим его сбоку.

На этом все, сборка завершена. Перед закрытием крышки проводим тестовое включение.

Блок завелся, теперь закрываем верхнюю крышку и идем тестировать. Для теста сначала воспользуемся лампочками накаливания на 36В 100Вт.

Как видим, блок держит их без труда. Данный вольтамперметр, который купил автор, не может измерить максимальный ток блока даже шунтом, хоть и написано на сайте, что с шунтом может измерять до 50А.

Не совершайте такую же ошибку и возьмите себе стрелочный амперметр — надежнее будет. А по поводу проверки — не переживайте, сейчас вы убедитесь в том, что максимальный ток устройства свыше 25А.

Для этого воспользуемся предохранителем на 25А и пустим его в короткое замыкание.

Его просто плавит, а это значит, что ток тут больше 25 ампер. Также попробуем плавить различные предметы.

Читайте также:  Отрезная циркулярная пила своими руками

Скрепка, шайба и даже шило — ничто не устояло перед мощью данного блока.

Источник: https://zen.yandex.ru/media/id/595e1ed9d7d0a69b431e44f1/5b2de11bd52cb500a99107f0

Лабораторный блок питания — сборка качественного регулируемого устройства

Каждый начинающий радиолюбитель нуждается в лабораторном блоке питания. Чтобы правильно его сделать, нужно подобрать подходящую схему, а с этим обычно возникает много проблем.

Виды и особенности блоков питания

Встречаются два типа блоков питания:

Блок импульсного типа может рождать помехи, которые буду отражаться на настройке приемников и других передатчиков. Блок питания линейного типа может оказаться неспособным для выдачи необходимой мощности.

Как правильно сделать лабораторный блок питания, от которого можно будет заряжать АКБ, и питать, чувствительны платы схем? Если взять простой блок питания линейного типа на 1,3-30 В, и мощностью тока не более 5 А, то получится хороший стабилизатор напряжения и тока.

Воспользуемся классической схемой для сборки блока питания своими руками. Она сконструирована на стабилизаторах LM317, которые регулируют напряжение в диапазоне 1,3-37В. Их работа совмещена с транзисторами КТ818. Это мощные радиодетали, которые способны пропустить большой ток. Защитную функцию схемы обеспечивают стабилизаторы LM301.

Эта схема разработана достаточно давно, и периодически модернизировалась. На ней появилось несколько диодных мостов, а измерительная головка получила не стандартный метод включения. На замену транзистору MJ4502 пришел менее мощный аналог – КТ818. Так же появились фильтрующие конденсаторы.

Монтаж блока своими руками

При очередной сборке, схема блока получила новую интерпретацию. В конденсаторах выходного типа увеличилась емкость, а для защиты были добавлены несколько диодов.

Транзистор типа КТ818 был в этой схеме неподходящим элементом. Он сильно перегревался, и часто приводил к поломке. Ему нашли замену более выгодным вариантом TIP36C, в схеме он имеет параллельное подключение.

Поэтапная настройка

Изготовленный лабораторный блок питания своими руками нуждается в поэтапном включении. Первоначальный запуск проходит с отключенными LM301 и транзисторами. Далее проверяется функция регулирующая напряжение через регулятор Р3.

Если напряжение регулируется хорошо, тогда в схему включаются транзисторы. Их работа тогда будет хорошей, когда несколько сопротивлений R7,R8 начнут балансировать цепь эмиттера. Нужны такие резисторы, чтобы их сопротивление было на максимально низком уровне. При этом тока должно хватать, иначе в Т1 и Т2 его значения будут различаться.

Этот этап регулировки позволяет подсоединять нагрузку к выходному концу блока питания. Следует стараться избегать короткого замыкания, иначе транзисторы тут же перегорят, а вслед за ними стабилизатор LM317.

Дальнейшим шагом буде монтаж LM301. Сперва, нужно удостовериться, что на операционном усилителе в 4 ножке имеется -6В. Если на ней присутствует +6В, то возможно имеется неправильное подключение диодного моста BR2.

Так же подключение конденсатора С2 может быть неверным. Проведя осмотр и исправив дефекты монтажа, можно на 7 ножку LM301 давать питание. Это допустимо делать с выхода блока питания.

На последних этапах настраивается Р1, так чтобы он мог работать на максимальном рабочем токе БП. Лабораторный блок питания с регулировкой напряжения отрегулировать не так сложно. В этом деле лучше лишний раз перепроверить монтаж деталей, чем получить КЗ с последующей заменой элементов.

Основные радиоэлементы

Чтобы собрать мощный лабораторный блок питания своими руками, нужно приобрести подходящие компоненты:

  • Для питания потребуется трансформатор;
  • Несколько транзисторов;
  • Стабилизаторы;
  • Операционный усилитель;
  • Несколько разновидностей диодов;
  • Электролитические конденсаторы – не более 50В;
  • Резисторы разных типов;
  • Резистор Р1;
  • Предохранитель.
  • Номинал каждой радиодетали необходимо сверять со схемой.

Блок в конечном виде

Для транзисторов необходимо подобрать подходящий радиатор, который сможет рассеивать тепло. Более того, внутри монтируется вентилятор, для охлаждения диодного моста. Еще один устанавливается на внешнем радиаторе, который будет обдувать транзисторы.

Для внутренней начинки желательно подобрать качественный корпус, так как вещь получилась серьезной. Все элементы следует хорошо зафиксировать. На фото лабораторного блока питания, можно заметить, что на замену стрелочным вольтметрам пришли цифрового устройства.

Фото лабораторного блока питания

Источник: http://tytmaster.ru/laboratornyj-blok-pitaniya/

Простой лабораторный блок питания

Сергей Никитин

Описанием этого простого лабораторного блока питания, я открываю цикл статей, в которых познакомлю Вас с простыми и надёжными в работе разработками (в основном различных источников питания и зарядных устройств), которые приходилось собирать по мере необходимости из подручных средств. Для всех этих конструкций в основном использовались детали и части от списанной с эксплуатации старой оргтехники.

И так, понадобился как-то срочно блок питания с регулировкой выходного напряжения в пределах 30-40 вольт и током нагрузки в районе 5-ти ампер.

В наличии имелся трансформатор от бесперебойника UPS-500, в котором при соединении вторичных обмоток последовательно, получалось около 30-33 Вольт переменного напряжения. Это меня как раз устраивало, но осталось решить, по какой схеме собирать блок питания. Если делать блок питания по классической схеме, то вся лишняя мощность при низком выходном напряжении будет выделяться на регулирующем транзисторе. Это мне не подходило, да и делать блок питания по предлагаемым схемам как то не захотелось, и ещё нужно было-бы для него искать детали.

По этому разработал схему под те детали, какие на данный момент у меня были в наличии.

За основу схемы взял ключевой стабилизатор, чтобы на греть в пустую окружающее пространство выделяемой мощностью на регулирующем транзисторе. Здесь нет ШИМ-регулирования и частота включения ключевого транзистора, зависит только от тока нагрузки. Без нагрузки частота включения в районе одного герца и менее, зависит от индуктивности дросселя и ёмкости конденсатора С5. Включение слышно по небольшому циканию дросселя. Транзисторы MJ15004 были в огромном количестве от ранее разобранных бесперебойников, поэтому решил поставить их на выходные. Для надёжности поставил два в параллель, хотя и один вполне справляется со своей задачей. Вместо них можно поставить любые мощные p-n-p транзисторы, например КТ-818, КТ-825. Дроссель L1 можно намотать на обычном Ш-образном (ШЛ) магнитопроводе, его индуктивность особо не критична, но желательно, чтобы подходила ближе к нескольким миллигенри. Берётся любой подходящий сердечник, Ш, ШЛ, с сечением желательно не меньше 3 см,. Вполне подойдут сердечники от выходных транформаторов ламповых приёмников, телевизоров, выходные трансформаторы кадровых развёрток телевизоров и т.д. Например стандартный размер Ш, ШЛ-16х24. Далее берётся медный провод, диаметром 1,0 — 1,5 мм и мотается до заполнения окна сердечника полностью. У меня дроссель намотан на железе от трансформатора ТВК-90, проводом 1,5 мм до заполнения окна.

Магнитопровод, конечно собираем с зазором 0,2-0,5мм.(2 — 5 слоёв обычной писчей бумаги).

Единственный минус этого блока питания, под большой нагрузкой дроссель у меня жужжит, и этот звук меняется от величины нагрузки, что слышно и немного достаёт. Поэтому наверно нужно дроссель хорошо пропитывать, а может ещё лучше — залить полностью в каком нибудь подходящем корпусе эпоксидкой, чтобы уменьшить звук «цикания» . Транзисторы я установил на небольшие алюминиевые пластины, и на всякий случай поставил внутрь ещё и вентилятор для их обдува. Вместо VD1 можно ставить любые быстрые диоды на соответствующее напряжение и ток, у меня просто в наличии много диодов КД213, поэтому я их в таких местах в основном везде и ставлю. Они достаточно мощные (10А) и напряжение 100В, что вполне достаточно. На мой дизайн блока питания особо внимание не останавливайте, задача стояла не та. Нужно было сделать быстро, и работоспособно. Сделал временно в таком корпусе и в таком оформлении, и пока это «временно» уже довольно долго работает.

Можно в схему ещё добавить амперметр для удобства. Но это дело личное. Я поставил одну головку для измерения напряжения и тока, шунт для амперметра сделал из толстого монтажного провода (на фотографиях видно, намотан на проволочном резисторе) и поставил переключатель «Напряжение» — «Ток». На схеме это просто не показал.

 

Источник: http://vprl.ru/publ/istochniki_pitanija/bloki_pitanija/prostoj_laboratornyj_blok_pitanija/11-1-0-112

Как собрать блок питания с регуляторами своими руками

Для радиолюбителей, да и вообще современного человека, незаменимой вещью в доме является блок питания (БП), ведь он имеет очень полезную функцию — регулирование напряжения и тока.

При этом мало кто знает, что сделать такой прибор при должном старании и знаниях радиоэлектроники вполне реально своими руками. Любому радиолюбителю, которому нравится возиться дома с электроникой, самодельные лабораторные блоки питания позволят заниматься своим хобби без ограничений. Как раз о том, как своими руками сделать регулируемый тип блок питания расскажет наша статья.

Что нужно знать

Блок питания с регулировкой тока и напряжения в современном доме – необходима вещь. Этот прибор, благодаря своему специальному устройству, может преобразовать напряжение и ток, имеющееся в сети до того уровня, который может потреблять конкретный электронный прибор. Вот примерная схема работы, по которой можно своими руками сделать подобный прибор.

Читайте также:  Катер на нитродвигателе своими руками

Схема

Но готовые БП стоят достаточно дорого, для того чтобы покупать их под конкретные нужды. Поэтому сегодня очень часто преобразователи для напряжения и тока изготавливаются своими руками.

Обратите внимание! Самодельные лабораторные блоки питания могут иметь различные габариты, показатели мощности и прочие характеристики. Все зависит от того, какой именно преобразователь вам нужен и для каких целей.

Профессионалы могут легко сделать мощный блок питания, в то время как новичкам и любителям подойдет для начала простой тип прибора. При этом схема, в зависимости от сложности, может использоваться самая разная.

Что нужно учитывать

Детали

Регулируемый блок питания представляет собой универсальный преобразователь, который может использоваться для подключения любой бытовой или вычислительной аппаратуры. Без него ни один домашний прибор не сможет функционировать нормально.
Такой БП состоит из следующих составных частей:

  • трансформатор;
  • преобразователь;
  • индикатор (вольтметр и амперметр).
  • транзисторы и прочие детали, необходимые для создания качественной электрической сети.

Схема, приведенная выше, отражает все компоненты прибора.
Кроме этого, данный тип блока питания должен обладать защитой на сильный и слабый ток. В противном случае любая внештатная ситуация может привести к тому, что преобразователь и подключенный к нему электрический прибор просто перегорит.

К этому результату также может привести неправильная спайка компонентов платы, неправильное подключение или монтаж.
Если вы новичок, то для того чтобы сделать регулируемый тип блока питания своими руками лучше выбирать простой вариант сборки. Одним из простых видов преобразователя является 0-15В БП.

Он имеет защиту от превышения показателя тока в подключенной нагрузке. Схема для его сборки размещена ниже.

Простая схема сборки

Это, так сказать, универсальный тип сборки. Схема здесь доступна для понимания любому человеку, который хотя бы раз держал в руках паяльник. К преимуществам этой схемы можно отнести следующие моменты:

  • она состоит из простых и доступных деталей, которые можно отыскать либо на радиорынке, либо в специализированных магазинах радиоэлектроники;
  • простой тип сборки и дальнейшей настройки;
  • здесь нижний предел для напряжения составляет 0,05 вольт;
  • двухдиапазонная защита для показателя тока (на 0,05 и 1А);
  • обширный диапазон для выходных напряжений;
  • высокая стабильность в функционировании преобразователя.

Диодный мост

В этой ситуации с помощью трансформатора напряжение будет обеспечиваться в диапазоне на 3В больше, чем имеется максимальное требуемое напряжение для выхода. Из этого следует, что блок питания, способный регулировать напряжение в пределах до 20В, нуждается в трансформаторе минимум на 23 В.

Обратите внимание! Диодный мост следует выбирать, исходя из показателя максимального тока, который будет ограничиваться имеющейся защитой.

Конденсатор для фильтра 4700мкф позволит чувствительной к помехам по питанию техники не давать фон. Для этого потребуется компенсационный стабилизатор, имеющий коэффициент подавления для пульсаций более 1000.
Теперь, когда с основными аспектами сборки мы разобрались, необходимо обратить внимание на требования.

Требования к прибору

Чтобы создать простой, но одновременно качественный и мощный блок питания с возможностью регулировать напряжение и ток своими руками, необходимо знать, какие требования существуют к такому типу преобразователей.
Эти технические требования выглядят так:

  • регулируемый стабилизированный выход на 3–24 В. При этом нагрузка по току должна составлять минимум 2 А;
  • нерегулируемый выход на 12/24 В. При этом предполагается большая нагрузка по току.

Чтобы выполнить первое требование, следует использовать в работе интегральный стабилизатор. Во втором случае выход необходимо сделать уже после диодного моста, так сказать, в обход стабилизатора.

Приступаем к сборке

Трансформатор ТС-150–1

После того как вы определились с требованиями, которым должен отвечать ваш постой блок питания регулируемого типа, а также была выбрана подходящая схема, можно начинать саму сборку. Но прежде всего запасемся нужными нам деталями.
Для сборки вам понадобятся:

  • мощный трансформатор. Например, ТС-150–1. Он способен выдавать напряжение в 12 и 24 В;
  • конденсатор. Можно использовать модель на 10000 мкФ 50 В;
  • микросхема для стабилизатора;
  • обвязки;
  • детали схемы (в нашем случае — схема, которая указана выше).

После этого по схеме собираем своими руками регулируемый блок питания в точном соответствии со всеми рекомендациями. Последовательность действий должна быть соблюдена.

Готовый БП

Для сборки БП используются следующие детали:

  • германиевые транзисторы (в большинстве своем). Если вы захотите заменить их на более современные кремневые элементы, тогда нижний МП37 обязательно должен остаться германиевым. Здесь используются МП36, МП37, МП38 транзисторы;
  • на транзисторе собирается токоограничительный узел. Он обеспечивает отслеживание падения на резисторе напряжения.
  • стабилитрон Д814. Он определяет регулировку максимального выходного напряжения. На себя он забирает половину от выходного напряжения;

Обратите внимание! Поскольку стабилитрон Д814 отбирает ровно половину напряжения на выходе, то его следует выбирать для создания 0-25В выходного напряжения примерно на 13 В.

  • нижний предел в собранном блоке питания имеет показатель напряжения всего 0,05 В. Такой показатель редкость для более сложных схем сборки преобразователя;
  • стрелочные индикаторы отображают показатели тока и напряжения.

Детали для сборки

Для размещения всех деталей необходимо выбрать стальной корпус. Он сможет экранировать трансформатор и плату блока питания. В результате вы избежите ситуации появления различного рода помех для чувствительной аппаратуры.

Получившийся преобразователь можно спокойно использовать для питания любой бытовой аппаратуры, а также экспериментов и проверок, проводимых в домашней лаборатории. Также такой прибор можно применять для оценки работоспособности автомобильного генератора.

Заключение

Используя простые схемы для сборки регулируемого типа блока питания, вы сможете набить руку и в дальнейшем делать своими руками более сложные модели.

Не стоит брать на себя непосильный труд, так как в конечном итоге вы можете не получить желаемый результат, а самодельный преобразователь будет работать неэффективно, что негативным образом может сказаться как на самом приборе, так и на функциональности электроаппаратуры, подключенной к нему.

Если же все сделать правильно, то на выходе вы получите отличный блок питания с регулировкой напряжения для своей домашней лаборатории или других бытовых ситуаций.

Источник: https://1posvetu.ru/ustrojstva/reguliruemyj-blok-pitaniya-svoimi-rukami.html

Простой универсальный блок питания своими руками

Простой универсальный блок питания своими руками

Блок питания – незаменимая вещь в арсенале радиолюбителя. Обычно готовые регулируемые блоки питания стоят весьма приличные суммы, поэтому очень часто для домашней радиолаборатории блок питания изготавливается самостоятельно. Итак, прежде всего нужно определиться с требованиями к блоку питания.

Мои требования были таковыми: 1) Стабилизированный регулируемый выход 3–24 В с нагрузкой по току минимум 2 А для питания радиоаппаратуры и налаживаемых радиосхем.

2) Нерегулируемый выход 12/24 В с большой нагрузкой по току для опытов по электрохимии Для удовлетворения первой части я решил использовать готовый интегральный стабилизатор, а для второй – сделать выход после диодного моста в обход стабилизатора.

Итак, после того как определились с требованиями начинаем поиски деталей. У себя в закромах я нашел мощный трансформатор ТС-150–1 (кажется от проектора), который как раз выдает 12 и 24 В, конденсатор на 10000 мкФ 50 В. Остальное пришлось закупать. Итак в кадре трансформатор, конденсатор, микросхема стабилизатора и обвязка:

После длительных поисков подходящего корпуса была куплена салфетница Ikea (299 руб) которая отлично подошла по габаритам и была выполнена из толстого пластика (2 мм) и с крышкой из нержавейки.

В магазине радиодеталей также были куплены врезные выключатели, радиатор для стабилизатора, диодный мост (на 35А) и механический вольтметр для визуального контроля напряжения, что бы не прибегать каждый раз к услугам мультиметра. Детали на фото:

Итак, немного теории. В качестве стабилизатора было решено применить интегральный стабилизатор, который по принципу работы представляет собой линейный компенсационный стабилизатор. Промышленностью выпускаются множество микросхем-стабилизаторов, как на фиксированное напряжение, так и регулируемые. Микросхемы бывают разной мощности, как на 0,1 А так и на 5 А и более. Данные микросхемы обычно содержат в себе защиту от короткого замыкания в нагрузке. При конструировании блока питания нужно решить, какой мощности нужен стабилизатор, и должен он быть на фиксированное напряжение или регулируемым. Подобрать соответствующую микросхему можно в таблицах, например тут: http://promelec.ru/catalog_info/48/74/256/116/ Или тут: http://promelec.ru/catalog_info/48/74/259/119/

  • Схема включения регулируемого стабилизатора:
Читайте также:  Коромысло для ловли леща летом и зимой своими руками

Нерегулируемые включаются еще проще, но на всякий случай поглядите в даташите. Для своего блока питания я взял стабилизатор КР142ЕН22А на 7.5А. Единственная тонкость, мешающая легко получать большие токи, это тепловыделение. Дело в том что мощность равная (Uвх-Uвых)*I будет рассеиваться стабилизатором виде тепла, а возможности по рассеянию тепла весьма ограничены, поэтому для получения больших стабилизированных токов нужно также менять Uвх, например коммутирую обмотки трансформатора. Что касается схемы. C1 выбирается исходя из 2000 мкФ на каждый ампер получаемого тока. С2-С4 желательно разместить непосредственно рядом со стабилизатором. Также рекомендуется параллельно со стабилизатором включить диод в обратном направлении для защиты от переполюсовки. В остальном схема блока питания классическая. 220 вольт подается на первичную обмотку трансформатора, со вторичной обмотки снятое напряжение идет на диодный мост, и выпрямленное поступает на сглаживающий конденсатор большой емкости. К конденсатору подключается стабилизатор, но напряжение можно снимать и напрямую с конденсатора, когда нужны большие токи и не важна стабилизация. Привести конкретную инструкцию что куда паять бессмысленно – всё решается исходя из имеющихся деталей.

  1. Вот внешний вид платочки, припаянной к стабилизатору:

Детали скомпонованы в корпусе и сделаны все необходимые прорези в крышке. Во время обработки были заменены врезные выключатели на тумблеры т.к. для их установки нужно меньше труда, а нержавейка, из которой сделана крышка, очень плохо поддается обработке вручную.

Все детали установлены и соединены проводами. Сечение проводов выбирается исходя из максимальных токов. Чем сечение больше тем лучше.

  • Ну и фото получившегося блока питания:

Выключатель слева вверху – выключатель питания. Правее него выключатель режима «force» отключающего стабилизатор и дающего выход непосредственно с диодного моста (10А при 12/24В). Ниже выключатель 12/24 В коммутирующий части вторичной обмотки. Под вольтметром ручка переменного резистора регулировки. Ну и клеммы выхода.

Автор проекта: Spiritus

Источник: https://eurosamodelki.ru/katalog-samodelok/elektronnie-samodelki/prostoi-universalnii-block-pitanija-svoimi-rukami

Лабораторный блок питания

Блок питания БП-4А куплен был больше 10 лет назад под один самодельный проект. В паспорте указавалось, что защита от короткого замыкания и перегрева есть. На практике блок питания работал на режимах по току больше рекомендованного (2,7 А), понижающий трансформатор легко отдавал ток до 6А и в конце концов блок сгорел.

С тех пор ему совсем не везло, купленные для ремонта микросхемы стабилизатора сгорали одна за другой и блок питания был заменен импульсным и забыт. Однако прямые стабилизаторы при своей работе не создают помех, что очень удобно для питания радиоаппаратуры.

Под новые проекты решено было переделать блок питания в лабораторный с регулируемым стабилизированным напряжением от 3 до 18 Вольт и током до 5 Ампер.

Как сделать лабораторный блок питания своими руками

Как сделать лабораторный блок питания своими руками / Электронные самоделки Sekretmastera

Для переделки была применена простая, но мощная схема на полевом транзисторе и регулируемом параллельном стабилизаторе TL431. Схема блока питания простая.

От старого блока питания, кроме корпуса и трансформатора, используется выпрямитель с электролитическими конденсаторами и  радиатор. Вся скромная обвязка полевого транзистора размещена на небольшой платке, но может быть легко установлена и навесным монтажом.

Транзистор закреплен на радиаторе, обязательно через штатную изолируюшую прокладку. Термопаста также не помешат. Для удобства монтажа радиатор повернут на 180 градусов. Смотри фото и видео. Регулирующий напряжение потенциометр установлен вместо корпуса плавково предохранителя по сети 220 Вольт.

Сам предохранитель оставлен внутри корпуса блока питания. Вопрос контроля напряжения решен установкой встраиваемого вольтметра (куплен через интернет). Для этого в корпусе блока питания вырезано прямоугольное окошко.

Так как напряжение питания вольтметра превышало 20 Вольт, то на микросхему питания вольтметра установлен  небольшой радиатор. Вольтметр и резистор регулировки напряжения закреплены на корпусе термоклеем. Конденсатор 5000×25В на выходе стабилизатора не устанавливался в виду избыточности и был заменен конденсаторм в несколько сот мкф.

Лабораторный блок питанияБлок питания БП-4АБлок питания БП-4АВнутренности блока питания БП-4АБлока питания разобранСхема лабораторного блока питанияПроверка макетаОкно под вольтметрВольтметр встроен в панельЭлектроника блока питанияРадиатор вольтметраЛабораторный блок питания

При сборке корпуса блока питания в целях безопасности необходимо проложить изолирующую прокладку со стороны пайки на плату обвязки транзистора. Полевой транзистор может быть типа IRLZ24, IRLZ34, IRLZ44.

Для более надежной защиты на плате выпрямителя установлен предохранитель на 6 А. Полевые транзисторы выдерживают ток десятки ампер и предохранитель скорее всего предназначен для защиты трансформатора и выпрямителя.

Если к блоку питания будет подключаться индуктивная нагрузка (например, электродвигатель), то обязательно подключение параллельно выходу мощного выпрямительного диода (анодом к +) . Испытания показали, что лабораторный блок питания с поставленными задачами справляется.

Понравилась идея строительства лабораторного блока питания своими руками? Добавьте инструкцию в избранное и поделитесь ссылкой с друзьями.

И в заключении для занятых вот ссылки на приобретение готового блока питания на 3-12 Вольт http://ali.pub/2h8tf0 и на 9 — 24 Вольт http://ali.pub/2h8rxc.

Источник: https://sekret-mastera.ru/bez-rubriki/laboratornyj-blok-pitaniya.html

Лабораторный блок питания с ампер-вольтметром на базе компьютерного БП (0-30В, 11А max)

????10.01.13 ????if33 ????239 145 ????31 Обычно для переделки компьютерных блоков питания используют блоки ATX, собранные на микросхемах TL494 (KA7500), но в последнее время такие блоки не попадаются.

Их стали собирать на более специализированных микросхемах, на которых сложнее сделать регулировку тока и напряжения с нуля. По этой причине был взят для доработки старый блок типа AT на 200W, который был в наличии.

Содержание / Contents

1. Вмонтирована плата зарядного устройства от мобильного телефона Nokia AC-12E с доработкой. В принципе можно использовать и другие зарядные устройства.Доработка заключалась в перемотке III обмотки трансформатора и установке дополнительного диода и конденсатора. После переделки блок стал выдавать напряжения +8V для питания вентилятора и вольтметра-амперметра и +20V для питания микросхемы управления TL494N.2. С платы блока AT выпаяны детали самозапуска первичной цепи и цепи регулировки выходного напряжения. Также были удалены все вторичные выпрямители.Выходной выпрямитель переделан по мостовой схеме. Использованы три диодных сборки MBR20100CT. Дроссель перемотан — диаметр кольца 27 мм, 50 витков в 2 провода ПЭЛ 1 мм. В качестве нелинейной нагрузки применена лампа накаливания 26V 0,12A. С ней напряжение и ток хорошо регулируются от нуля. Для обеспечения устойчивой работы микросхемы изменены цепи коррекции. Для грубой и точной регулировок напряжения и тока применено особое подключение потенциометров. Такое подключение позволяет плавно изменять напряжение и ток в любом месте при любом положении потенциометра грубой регулировки. Особого внимания требует шунт, провода для регулировки и измерения должны подключатся непосредственно к его выводам, так как напряжение, снимаемое с него невелико. На схеме эти подключения показаны фиолетовыми стрелками. Измеряемое напряжение для цепи регулирования снимается с делителя с коррекцией для устранения самовозбуждения в цепях управления. Верхний предел установки напряжения подбираются резисторами R38, R39 и R40. Верхний предел установки тока подбирается резистором R13.3. Для измерения тока и напряжения применен вольтметр-амперметрЗа основу взята схема «Суперпростой амперметр и вольтметр на супердоступных деталях (автовыбор диапазона)» от Eddy71. В схему введена регулировка баланса ОУ при измерении тока, что позволило резко улучшить линейность. На схеме это потенциометр «Баланс ОУ», напряжение с которого поступает на прямой или инверсный входы (подбирается, куда подключить, на схеме обозначено зелеными линиями).Автоматический выбор диапазона измерения реализован программно. Первый диапазон до 9,99A с указанием сотых долей, второй до 12A с указанием десятых долей ампера.4. Программа для микроконтроллера написана на СИ (mikroC PRO for PIC)и снабжена ми.Конструктивно все элементы размещены в корпусе блока AT. Плата зарядного устройства закреплена на радиаторе с силовыми транзисторами. Сетевые разъемы убраны и на их месте установлен выключатель и выходные зажимы. Сбоку на крышке блока находятся резисторы установки напряжения и тока и индикатор вольтметра-амперметра. Закреплены они на фальшпанели с внутренней стороны крышки. Чертежи выполнены в программе Frontplatten-Designer 1.0. Междукаскадный трансформатор блока AT не переделывается. Выходной трансформатор блока AT тоже не переделывается, просто средний отвод, выходящий из катушки, отпаивается от платы и изолируется. Выпрямительные диоды заменены на новые, указанные в схеме.

Шунт взят от неисправного тестера и закреплен на изоляционных стойках на радиаторе с диодами. Плата для вольтметра-амперметра использована от «Суперпростого амперметра и вольтметра на супердоступных деталях (автовыбор диапазона)» от Eddy71 с последующей доработкой (перерезаны дорожки, согласно схемы).

В качестве базового блока использован блок AT 200 W. К сожалению, он имеет довольно маленький радиатор для силовых транзисторов.

При этом вентилятор подключен к напряжению 8 Вольт (для уменьшения создаваемого шума), поэтому токи больше 6 – 7 Ампер, снимать можно только кратковременно, во избежание перегрева транзисторов.

Файлы схем, плат, чертежей и исходники и прошивка

▼ Fayly.zip ???? 10/01/13 ⚖️ 70,3 Kb ⇣ 523

• How to Convert a Computer ATX Power Supply to a Laboratory Power Supply

• Суперпростой амперметр и вольметр на супердоступных деталях II (автовыбор диапазона) • 3 digits Digital volt meter

Иван Внуковский, г. Днепропетровск

Иван Внуковский (if33)

Украина, г. Днепропетровск

Радиолюбитель, стаж более 40 лет. Работал на заводе инженером КБ, инженером по обслуживанию ЭВМ, механиком по ремонту бытовой техники. Сейчас на пенсии.

Источник: https://datagor.ru/practice/power/2246-peredelka-bloka-at-v-reguliruemyy-bolk-pitaniya-0-30v-0-11a.html

Ссылка на основную публикацию
Adblock
detector