Релейная плата своими руками

Опубликовано 09.06.2015 15:58:00

Проведена ревизия статьи, доступны Eagle файлы для скачивания, добавлены 3 варианта реле модулей.

В вашем проекте требуется включать/выключать освещение, либо что-нибудь иное, что, в силу потребляемого напряжения и тока, нельзя подключить напрямую к портам Arduino? С данной задачей отлично справится реле модуль!

Релейная плата своими руками

Немного теории

Электромагнитное реле — устройство, замыкающее и размыкающее механические электрические контакты (зеленые точки) при подаче на обмотку реле (выводы обмотки отмечены красными точками) электрического тока.

Реле бывают различными по величине коммутируемого тока и напряжения, по количеству пар коммутационных контактов, по питающему напряжению катушки реле. Для наглядного примера остановимся на синих, знакомых глазу Ардуинщика, реле марки SONGLE SRD-05VDC. Они позволяют коммутировать до 10А 30V DC и 10A 250V AC, при подаче на обмотку реле всего 5 Вольт.

Релейная плата своими руками

Реле модуль с транзистором в ключевом режиме

В архиве «Реле модуль DIP«

Казалось бы, раз реле включается от пяти вольт, то можно просто напросто подключить реле к цифровому выводу как светодиод. Но не всё так просто. Дело в том, что реле потребляет около 70мА, в то время как порт контроллера способен выдать лишь 20мА. Справиться с этой проблемой нам поможет биполярный транзистор + небольшая обвязка.

Транзистор представляет из себя радиодеталь с тремя ногами: база, коллектор и эмиттер. В данном случае будем использовать NPN типа. Когда на базе транзистора нет сигнала — он закрыт, при появлении напряжения транзистор открывается и ток беспрепятственно течет через переход коллектор-эмиттер.

С транзистором определились, переходим к обвязке.

Релейная плата своими руками

Для корректной работы потребуются два резистора R1 и R2. R1 является токоограничительным и устанавливается для защиты порта контроллера. Во избежание ложных срабатываний, базу транзистора следует притянуть к земле резистором R2.

Катушка реле является по сути своей индуктивностью, при резком обрыве тока на ней происходит скачок напряжения, который в последствии может вывести транзистор из строя.

За сим следует замкнуть катушку на саму себя установив для этого диод D1 встречно напряжению.

Релейная плата своими руками

Реле модуль с опторазвязкой

В архиве «Реле модуль DIP (оптрон)» и «Реле модуль SMD (оптрон)«

Более навороченным вариантом является реле модуль и опторазвязкой. Опторазвязка позволяет разделить цепь питания обмотки реле и сигнальную цепь Arduino.

В модулях используются широко распространенные оптроны PC817 (EL817), так что проблем с покупкой возникнуть не должно. Оптрон представляет из себя радиодеталь внутри которой находится фотодиод и фототранзистор, т.е сигнал передается через свет, Оптрон имеет 4 вывода назначение которых можно увидеть на картинке снизу.

Релейная плата своими руками

При использовании оптрона схема не сильно усложнится. Добавится только токоограничительный резистор R1 для фотодиода. Т.к не всегда под рукой оказывается два источника питания, то на модулях было решено оставить возможность работы от одного источника путем замыкания джампера (об этом чуть ниже).

Релейная плата своими руками

 

Подключение реле модуля с опторазвязкой

1. Питание от различных источников

Питание обмотки реле подключается к контактам «RV» и «RG», а управляющее к выводам «S» и «G».

Релейная плата своими руками

2. Питание от одного источника

Замкнув джампер, мы объединили земли. Теперь модуль можно питать от одного источника.

Релейная плата своими руками

  • Релейная плата своими руками
  • В архиве лежат шаблоны под ЛУТ, Eagle файлы и списки деталей.
  • Открываем изображение => Печать => Во всю страницу
  • Для облегчения распайки smd компонентов с обратной стороны платы, где нет маркировки, приведу картинку. 
  • Релейная плата своими руками

В данный момент еще реализованы не все элементы нашего сообщества. Мы активно работаем над ним и в ближайшее время возможность комментирования статей будет добавлена.

Источник: http://zelectro.cc/DIY_Relay_module

Радиоуправляемое реле своими руками

Радиоэлектроника для начинающих

Кто из начинающих радиолюбителей не хотел сделать какое-нибудь устройство с управлением по радиоканалу? Наверняка многие.

Давайте рассмотрим, как на базе готового радиомодуля собрать несложное радиоуправляемое реле.

В качестве приёмо-передатчика я использовал готовый модуль. Купил его на AliExpress вот у этого продавца.

Комплект состоит из пульта–передатчика на 4 команды (брелок), а также платы приёмника. Плата приёмника выполнена в виде отдельной печатной платы и не имеет исполнительных цепей. Их необходимо собрать самому.

Вот внешний вид.

Релейная плата своими руками

Брелок добротный, приятный на ощупь, поставляется с батарейкой 12V (23А).

В брелоке встроена плата, на которой собрана довольно примитивная схема пульта-передатчика на транзисторах и шифраторе SC2262 (полный аналог PT2262).

Смутило то, что на микросхеме в качестве маркировки указано SC2264, хотя из даташита известно, что дешифратор для PT2262 – это PT2272. Тут же на корпусе микросхемы чуть ниже основной маркировки указано SCT2262.

Вот и думай, что к чему . Что ж, для Китая это не удивительно.

Релейная плата своими руками

Передатчик работает в режиме амплитудной модуляции (АМ) на частоте 315 МГц.

Приёмник собран на небольшой печатной плате. Радиоприёмный тракт выполнен на двух SMD-транзисторах с маркировкой R25 – биполярных N-P-N транзисторах 2SC3356. На операционном усилителе LM358 реализован компаратор, а к его выходу подключен дешифратор SC2272-M4 (она же PT2272-M4).

Релейная плата своими руками

Как работает устройство?

Суть работы сего устройства такова. При нажатии на одну из кнопок пульта A, B, C, D передаётся сигнал. Приёмник усиливает сигнал, а на выходах D0, D1, D2, D3 платы приёмника появляется напряжение 5 вольт.

Вся загвоздка в том, что 5 вольт на выходе будет только пока нажата соответствующая кнопка на брелоке. Стоит отпустить кнопку на пульте — напряжение на выходе приёмника пропадёт. Упс.

В таком случае не получиться сделать радиоуправляемое реле, которое бы срабатывало при кратковременном нажатии кнопки на брелоке и отключалось при повторном.

Связано это с тем, что существуют разные модификации микросхемы PT2272 (китайский аналог – SC2272). А в такие модули почему то ставят именно PT2272-M4, у которых нет фиксации напряжения на выходе.

А какие же бывают разновидности микросхемы PT2272?

  • PT2272-M4 – 4 канала без фиксации. На выходе соответствующего канала +5V появляется только тогда, пока нажата кнопка на брелоке. Именно такая микросхема используется в купленном мной модуле.
  • PT2272-L4 – 4 зависимых канала с фиксацией. Если включается один выход, то другие отключаются. Не совсем удобно, если необходимо независимо управлять разными реле.
  • PT2272-T4 – 4 независимых канала с фиксацией. Самый лучший вариант для управления несколькими реле. Поскольку они независимы, то каждое может выполнять свою функцию независимо от работы других.

Что же сделать, чтобы реле срабатывало так, как нам нужно?

Тут есть несколько решений:

  • Выдираем микросхему SC2272-M4 и вместо неё ставим такую же, но с индексом T4 (SC2272-T4). Теперь выходы будут работать независимо и с фиксацией. То есть можно будет включить/выключить любое из 4 реле. Реле будут включаться при нажатии кнопки, и выключаться при повторном нажатии на соответствующую кнопку.
  • Дополняем схему триггером на К561ТМ2. Так как микросхема К561ТМ2 состоит из двух триггеров, то понадобиться 2 микросхемы. Тогда будет возможность управлять четырьмя реле.
  • Используем микроконтроллер. Требует навыков программирования.

На радиорынке микросхему PT2272-T4 я не нашёл, а заказывать с Ali целую партию одинаковых микрух счёл нецелесообразным. Поэтому для сборки радиоуправляемого реле решил использовать второй вариант с триггером на К561ТМ2.

  • Схема достаточно проста (картинка кликабельна).
  • Релейная плата своими руками
  • Вот реализация на макетной плате.

Релейная плата своими руками
Релейная плата своими руками

На макетке я быстренько собрал исполнительную цепь только для одного канала управления. Если взглянуть на схему, то можно увидеть, что они одинаковые. В качестве нагрузки на контакты реле нацепил красный светодиод через резистор в 1 кОм.

Наверняка заметили, что в макетку я воткнул готовый блок с реле. Его я вытащил из охранной сигнализации. Блок оказался очень удобным, так как на плате уже было распаяно само реле, штыревой разъём и защитный диод (это VD1–VD4 на схеме).

Пояснения к схеме

Приёмный модуль

Релейная плата своими руками

Вывод VT – это вывод, на котором появляется напряжение 5 вольт, если был принят сигнал от передатчика. Я к нему подключил светодиод через сопротивление 300 Ом. Номинал резистора может быть от 270 до 560 Ом. Так указано в даташите на микросхему.

При нажатии на любую кнопку брелока светодиод, который мы подключили к выводу VT приёмника, будет кратковременно вспыхивать — это свидетельствует о приёме сигнала.

Выводы 5V и GND служат для подключения напряжения питания. Для питания схемы нам понадобится стабилизированный блок питания на 12 вольт. Ток потребления схемы небольшой, поэтому подойдёт любой блок. В качестве источника питания можно применить и блок питания, собранный своими руками.

Выводы D0, D1, D2, D3; – это выходы микросхемы дешифратора PT2272-M4. С них мы будем снимать принятый сигнал. На этих выходах появляется напряжение +5V, если был принят сигнал от пульта управления (брелока). Именно к этим выводам подключаются исполнительные цепи. Кнопки A, B, C, D на пульте (брелоке) соответствуют выходам D0, D1, D2, D3.

На схеме приёмный модуль и триггеры запитываются напряжением +5V от интегрального стабилизатора 78L05. Цоколёвка стабилизатора 78L05 показана на рисунке.

Релейная плата своими руками

Буферная цепь на D-триггере

На микросхеме К561ТМ2 собран делитель частоты на два. На вход С приходят импульсы с приёмника, и D-триггер переключается в другое состояние до тех пор, пока на вход С не придёт второй импульс с приёмника. Получается очень удобно. Поскольку реле управляется с выхода триггера, то и оно будет включено или выключено до тех пор, пока не придёт следующий импульс.

Вместо микросхемы К561ТМ2 можно использовать К176ТМ2, К564ТМ2, 1КТМ2 (в металле с позолотой) или импортные аналоги CD4013, HEF4013, HСF4013. Каждая из этих микросхем состоит из двух D-триггеров. Их цоколёвка одинаковая, но вот корпуса могут быть разные, как, например, у 1КТМ2.

Исполнительная цепь

В качестве силового ключа используется биполярный транзистор VT1. Я использовал КТ817, но подойдёт КТ815. Он управляет электромагнитным реле K1 на 12V. К контактам электромагнитного реле K1.1 можно подключать любую нагрузку. Это может быть лампа накаливания, светодиодная лента, электродвигатель, электромагнит замка и др.

Цоколёвка транзистора КТ817, КТ815.

Релейная плата своими руками

Следует учесть, что мощность подключаемой к контактам реле нагрузки должна быть не меньше той мощности, на которую рассчитаны контакты самого реле.

Диоды VD1–VD4 служат защитой транзисторов VT1–VT4 от напряжения самоиндукции.

В момент отключения реле в его обмотке возникает напряжение, которое противоположено по знаку тому, которое поступало на обмотку реле от транзистора. В результате транзистор может выйти из строя.

А диоды по отношению к напряжению самоиндукции оказываются открытыми и «гасят» его. Тем самым они берегут наши транзисторы. Не забывайте про них!

Если хотите дополнить исполнительную цепь индикатором включения реле, то добавляем в схему светодиод и резистор на 1 кОм. Вот схема.

Читайте также:  Самодельный повербанк с солнечной батареей на 4000 ма/ч в силиконовом чехле, своими руками из подручных материалов

Релейная плата своими руками

Теперь, когда на обмотку реле будет подано напряжение, включится светодиод HL1. Это будет указывать на то, что реле включено.

Вместо отдельных транзисторов в схеме можно использовать всего лишь одну микросхему с минимумом обвязки. Подойдёт микросхема ULN2003A. Отечественный аналог К1109КТ22.

Это микросхема содержит 7 транзисторов Дарлингтона. Удобно то, что выводы входов и выходов расположены друг против друга, что облегчает разводку платы, да и обычное макетирование на беспаечной макетной плате.

Работает довольно просто. Подаём на вход IN1 напряжение +5V, составной транзистор открывается, и вывод OUT1 подключается к минусу питания. Тем самым на нагрузку подаётся напряжение питания. Нагрузкой может быть электромагнитное реле, электромотор, цепь из светодиодов, электромагнит и пр.

В даташите производитель микросхемы ULN2003A хвастается, что ток нагрузки каждого выхода может достигать 500 мА (0,5А), что собственно, не мало. Тут многие из нас умножат 0,5А на 7 выходов и получат суммарный ток в 3,5 ампера. Да, здорово! НО. Если микросхема и сможет прокачать через себя такой существенный ток, то на ней можно будет жарить шашлык…

На самом деле, если задействовать все выходы и пустить в нагрузку ток, то выжать без вреда для микросхемы можно будет около ~80 – 100мА на канал. Опс. Да, чудес не бывает.

  1. Вот схема подключения ULN2003A к выходам триггера К561ТМ2.
  2. Есть ещё одна широко распространённая микросхема, которую можно использовать – это ULN2803A.

У неё уже 8 входов/выходов. Я её выдрал с платы убитого промышленного контроллера и решил поэкспериментировать.

Схема подключения ULN2803A. Для индикации включения реле можно дополнить схему цепью из светодиода HL1 и резистора R1.

  • Вот так это выглядит на макетке.

Кстати, микросхемы ULN2003, ULN2803 допускают объединение выходов для увеличения максимально-допустимого выходного тока. Это может потребоваться, если нагрузка потребляет более 500 мА. Соответствующие входы также объединяются.

Вместо электромагнитного реле в схеме можно применить твёрдотельное реле (SSR — Solid State Relay). В таком случае, схему можно существенно упростить.

Например, если применить твёрдотельное реле CPC1035N, то отпадает необходимость в питании устройства от 12 вольт. Достаточно будет 5-вольтового блока питания для питания всей схемы.

Также отпадает необходимость в интегральном стабилизаторе напряжения DA1 (78L05) и конденсаторах С3, С4.

Вот так твёрдотельное реле CPC1035N подключается к триггеру на К561ТМ2.

Несмотря на свою миниатюрность, твёрдотельное реле CPC1035N может коммутировать переменное напряжение от 0 до 350 V, при токе нагрузки до 100 mA. Иногда этого достаточно, чтобы управлять маломощной нагрузкой.

Можно применить и отечественные твёрдотельные реле, я, например, экспериментировал с К293КП17Р.

Выдрал его с платы охранной сигнализации. В данной релюшке, кроме самого твёрдотельного реле, есть ещё и транзисторная оптопара. Её я не использовал – оставил выводы свободными. Вот схема подключения.

Возможности К293КП17Р весьма неплохие. Может коммутировать постоянное напряжение отрицательной и положительной полярности в пределах -230…230 V при токе нагрузки до 100 mA. А вот с переменным напряжением работать не может. То есть постоянное напряжение к выводам 8 – 9 можно подводить как угодно, не заботясь о полярности. Но вот переменное напряжение подводить не стоит.

Дальность работы

Чтобы приёмный модуль надёжно принимал сигналы от пульта–передатчика, к контакту ANT на плате нужно припаять антенну. Желательно, чтобы длина антенны была равна четверть длины волны передатчика (то бишь λ/4). Так как передатчик брелока работает на частоте в 315 МГц, то по формуле длина антенны составит ~24 см. Вот расчёт.

  1. Где f – частота (в Гц), следовательно 315 000 000 Гц (315 Мегагерц);
  2. Скорость света С – 300 000 000 метров в секунду (м/c);
  3. λ – длина волны в метрах (м).
  4. Те, кто не знает, как переводить приставки Мега- и Кило- в нули, прочтите статью о сокращённой записи численных величин.

Чтобы узнать, на какой частоте работает пульт–передатчик, вскрываем его и ищем на печатной плате фильтр на ПАВ (Поверхностно–акустических волнах). На нём обычно указана частота. В моём случае это 315 МГц.

При необходимости антенну можно и не припаивать, но дальность действия устройства сократится.

В качестве антенны можно применить телескопическую антенну от какого–нибудь неисправного радиоприёмника, магнитолы. Будет очень даже круто .

Дальность, при которой приёмник устойчиво принимает сигнал от брелока небольшое. Опытным путём я определил расстояние в 15 – 20 метров. С преградами это расстояние уменьшается, а вот при прямой видимости дальность будет в пределах 30 метров. Ожидать чего-то большего от такого простого устройства глупо, схемотехника его весьма проста.

Шифрование или «привязка» пульта к приёмнику

Изначально, брелок и приёмный модуль незашифрованы. Иногда говорят, что не «привязаны».

Если купить и использовать два комплекта радиомодулей, то приёмник будет срабатывать от разных брелоков. Аналогично будет и с приёмным модулем. Два приёмных модуля будут срабатывать от одного брелока. Чтобы этого не происходило, применяется фиксированная кодировка. Если приглядеться, то на плате брелока и на плате приёмника есть места, где можно напаять перемычки.

Выводы от 1 до 8 у пары микросхем кодеров/декодеров (PT2262/PT2272) служат для установки кода. Если приглядется, то на плате пульта управления рядом с выводами 1 – 8 микросхемы есть лужёные полоски, а рядом с ними буквы H и L. Буква H – означает High («высокий»), то есть высокий уровень.

Если паяльником накинуть перемычку от вывода микросхемы к полоске с пометкой H, то мы тем самым подадим высокий уровень напряжения в 5V на микросхему.

Буква L соответственно означает Low («низкий»), то есть, накидывая перемычку c вывода микросхемы на полоску с буквой L, мы устанавливаем низкий уровень в 0 вольт на выводе микросхемы.

На печатной плате не указан нейтральный уровень – N. Это когда вывод микросхемы как бы «висит» в воздухе и ни к чему не подключен.

Таким образом, фиксированный код задаётся 3 уровнями (H, L, N).

При использовании 8 выводов для установки кода получается 38 = 6561 возможных комбинаций! Если учесть, что четыре кнопки у пульта также участвуют в формировании кода, то возможных комбинаций становится ещё больше. В результате случайное срабатывание приёмника от чужого пульта с иной кодировкой становится маловероятным.

На плате приёмника пометок в виде букв L и H нет, но тут нет ничего сложного, так как полоска L подключена к минусовому проводу на плате. Как правило, минусовой или общий (GND) провод выполняется в виде обширного полигона и занимает на печатной плате большую площадь.

Полоска H подключается к цепям с напряжением в 5 вольт. Думаю понятно.

Я установил перемычки следующим образом. Теперь мой приёмник от другого пульта уже не сработает, он узнает только «свой» брелок. Естественно, распайка должна быть одинаковой как у приёмника, так и у пульта-передатчика.

  • Кстати, думаю, вы уже сообразили, что если потребуется управлять несколькими приёмниками от одного пульта, то просто распаиваем на них такую же комбинацию кодировки, как на пульте.
  • Стоит отметить, что фиксированный код не сложно взломать, поэтому не рекомендую использовать данные приёмо-передающие модули в устройствах доступа.
  • Главная » Радиоэлектроника для начинающих » Текущая страница
  • Также Вам будет интересно узнать:
  • Ремонтируем люстру с пультом управления.

  • Ремонт точки доступа Wi-Fi.

Источник: https://go-radio.ru/radioupravlyaemoe-rele-svoimi-rukami.html

РадиоКот :: Ковырялочка для п/плат

Добавить ссылку на обсуждение статьи на форумеРадиоКот >Лаборатория >Радиолюбительские технологии >

Теги статьи: Добавить тег

Ковырялочка для п/плат.

Когда то давно в начале 80-х была у меня сверлилка для п/плат на базе ГДР — овского электродвигателя и маленького патрона от дрели на 1 — ом конусе Морзе. Тип мотора не сохранился но схема была срисована в тетрадку.

В те годы домашних компьютеров не было, и все интересные схемы и мозговые изыскания заносили в общие тетради в клеточку, по 96 листов, стоимостью 44 копейки.

Релейная плата своими руками Релейная плата своими руками

Схема работала по алгоритму: маленькая нагрузка – патрон крутится медленно, возрастает нагрузка – патрон крутится быстрее.

Очень удобно было использовать для сверления отверстий в п/платах, попал в кернение — обороты возросли. Лет прошло много, сверлилка давно канула в вечность. Недавно озадачился проблемой сверления отверстий в п/платах.

В связи с отсутствием таких транзисторов (особенно П-701) пришлось переводить схему на современные детали:

Релейная плата своими руками Релейная плата своими руками Релейная плата своими руками

П/плата универсальная: есть КТ972 — ставим его и перемычку от базы в эмиттер маленького транзистора, нет КТ972 — ставим КТ315 и аналог КТ805, как на фото. Еще одна схема сложилась в голове другого автора: Edward Nedeliaev (https://www.cqham.ru/smartdrill.htm). На эту ссылку натолкнулся после недельных неудачных попыток заставить схему работать с мотором типа ДПМ. Хотя как нам известно из классики, что один хомосапиенс собрал, то другой хомосапиенс завсегда разобрать сможет. Как выяснилось с ДПМ моторами схема не работает, ей видите ли подавай только двигатели серии ДПР.

Релейная плата своими руками

Но ДПР мотора нет и покупать его желания не возникает,зато есть вот такая коробочка и ковырялочка из неё.

Релейная плата своими руками

С этого места начинается лабораторная работа на тему «Подбери управление КОВЫРЯЛОЧКОЙ для П/ПЛАТ». На просторах интернета полно разных схем, простых и не очень простых для управления моторами сверлилок для п/плат. Рассмотрим некоторые наиболее распространённые из них: 1.

регулятор на транзисторах без применения микросхем (серия К142ЕН игнорируется) 2. регулятор на транзисторах и микросхемах. 3. регулятор на транзисторах и микроконтроллере. 4.

регулятор напряжения (пропустим, он мало интересен для применения в рассматриваемых целях и задачах)

Первой попробуем схему А. Москвина, г. Екатеринбург:

Релейная плата своими руками Релейная плата своими руками Релейная плата своими руками

Схема отлично выполняет свои функции и обязанности: 1. сенсорно управляется ( пуск/регулировка/стоп) 2. изменяет обороты 3. тормозит двигатель 4. настройки практически не требует Если в качестве сенсора применить разделённую пополам площадку размером с 1 копеечную монету, то приложением пальца очень удобно включать и регулировать обороты двигателя.

В журнале “Радио” за 2009 год была другая схема, для ДПМ моторов. Придумал её С. Саглаев, г. Москва. Мне пришлось изменить некоторые номиналы под свой мотор.

Схема работает достаточно хорошо, но как-то задумчиво. Возможно это связано с имеющимся у меня двигателем. Вторыми для опытов возьмём так называемые ШИМ регуляторы.

Вариантов схем превеликое множество и авторов просто легион. По этой причине имена и фамилии героев здесь не приводятся.

Схемы работают, но скорее подходят для управления оборотами вентилятора с коллекторным двигателем. Более приемлемые параметры для сверлилки имеют схемы на таймере NE-555:

Рекомендую вариант который на фото и схеме изображен внизу, почему-то её работа понравилась больше других.

Читайте также:  Компактный фонарик «zippo» своими руками

Одно из схемотехнических решений — применение обратной связи. На форуме “Арсенала” (https://www.foar.ru) позаимствованы две таких схемы:

Эти варианты схем достойны внимания и повторения. Следует отметить что вариант с диодом КД213 удостоился чести быть установленным в корпус, и занял пустующее место в серой коробочке наряду с ковырялочкой и свёрлами. Вероятно, простые так называемые ШИМ регуляторы, скорее всего подходят для стационарной сверлилки типа этой:

Следующий на очереди — микропроцессорный вид сверлилок. Запад как обычно нам помог в схемотехническом решении: https://mondo-technology.com/dremel.html Делал эту схему года три назад, в качестве подопытного кролика выступил убитый Dremel. Внутри был установлен импортный двигатель на 24 вольта и запитан от этой схемы:

Замечательно работающая получилась конструкция, используется на работе до сих пор и заслуживает только похвальных отзывов. Кстати отверстия в п/платах на фотографиях сделаны именно ей. Как вариант для сверлилки опробовалась схема на ATtiny13 (автор hardlock, https://www.hardlock.org.ua/mc/tiny/dc_motor_pwm/index.html):

Симпатичная и неплохо работающая конструкция, но хочется снова подчеркнуть что она скорее подходит для стационарной сверлилки.

И в завершение конструкция, которая покорила своей повторяемостью и удобством использования. Придумал и реализовал схему в далёком 1989 году болгарин Александър Савов:

Схема отлично работает по изложенному в начале алгоритму: 1. маленькая нагрузка – патрон крутится не быстро. 2. возрастает нагрузка – патрон крутится быстрее.

Схеме глубоко безразлично с какими моторами работать:

Все двигатели, которые оказались в наличии дома, были опробованы под управлением этой конструкции и отлично отработали тест. Результаты превзошли все ожидания. Незначительная подстройка резистором RP1 нужных вам минимальных оборотов ротора и резистором RP2 — устойчивого, без рывков, вращения, и всё, двигатель работает.

P.S. Не забывайте о блоке питания, который не должен держать вашу ковырялочку на голодном пайке по току.

Файлы: Схемы (SPlan) и платы (SprintLayout) Прошивка для сверлилки на PIC»е Прошивка для сверлилки на ATtiny13 Справочник по двигателям ДПМ, ДПР, ДП

Все вопросы, как всегда, в Форум.

Как вам эта статья? Заработало ли это устройство у вас?

Источник: https://www.radiokot.ru/lab/hardwork/31/

Адаптация релейных модулей

В ходе дальнейшего внедрения в быту датчиков движения HC-SR501 решил упростить себе жизнь и заказал у китайских товарищей релейные модули высокого уровня.  Элементарное соединение этих двух модулей дает в результате устройство, готовое к работе сразу после подачи питания. Но как оказалось, китайские товарищи совсем не знают русский язык))) – приехали релейные модули низкого уровня.

Релейная плата своими руками Релейная плата своими руками

В модулях высокого уровня реле включает нагрузку при подаче на вход управляющего сигнала. В модулях низкого уровня все с точностью до наоборот – реле включится только тогда, когда высокий уровень на входе релейного модуля снизится до низкого.

Доводить начатое до конца нужно было в любом случае и решил найти способ адаптировать  реле низкого уровня к высокому. Для себя определил два способа решения задачи:

  1. инвертирование высокого уровня сигнала с датчика движения в низкий уровень входного сигнала модуля реле;
  2. изменение схемы имеющегося модуля.

Инвертирование высокого уровня осуществил, реализовав две схемы:

а)  на транзисторе

Релейная плата своими руками Релейная плата своими руками Релейная плата своими руками

б) с применением оптопары

Релейная плата своими руками

Оптопару  РС817 выпаял из неисправного компьютерного блока питания. Управляется она напряжением 3-4 вольта, переход транзистора выдерживает до 35 вольт (по разным источникам), но для перестраховки запитал ее через резистор R2.

Оба варианта работают одинаково хорошо, но это навесной монтаж и дополнительные элементы.
Дабы избежать всего этого решил препарировать релейный модуль и изменить схему.

Так выглядит окончательная схема релейного модуля низкого уровня:

Релейная плата своими руками

Чудесное превращение  низкоуровнего модуля в высокоуровневый состоит в замене транзистора pnp структуры на транзистор структуры npn, так же следует поменять полярность установленных диода и светодиодов.

Светодиоды следует разменять местами с их ограничительными  резисторами. Полярность питания поменять – плюс на землю,  минус  на плюс.

После такой переделки смело можно соединять напрямую датчик движения и релейный модуль.

Релейная плата своими руками

Надеюсь, информация была полезна. Если плохо видно схемы — вот файлы-исходники. Автор — Кондратьев Николай, г. Донецк

   Схемы автоматики

Источник: https://elwo.ru/publ/skhemy_avtomatiki/adaptacija_relejnykh_modulej/28-1-0-909

Мои маленькие реле: Brainfuck компьютер это магия

Давным давно, когда вокруг все было большим, а я маленьким, читал я книгу Войцеховского «Радиоэлектронные игрушки», горя желанием воплотить в жизнь те или иные описанные в ней устройства.

Так, в уже тоже далеком 2008-м году, из нескольких десятков электромагнитных реле было собрано 4-разрядное АЛУ (РЦВМ1 — Релейная Цифровая Вычислительная Машина — версия 1) способное складывать и вычитать.

И задумал я тогда — а что если собрать существенно большее количество реле и построить полноценный релейный компьютер? На неспешную сборку реле то здесь то там до требуемого количества ушло всего 8 лет, и я начал творить.

Разрешите представить Вам свой проект по созданию второй версии релейной цифровой вычислительной машины, с кодовым названием «BrainfuckPC» — 16-разрядной компьютер с Фон-Неймановской архитектурой и набором инструкций для языка Brainfuck. Работы по проектированию завершены, и я в процессе изготовления сего монстра. Релейная плата своими руками

1 Технические характеристики

  • Разрядность шины адреса: 16 бит
  • Адресация: пословная, 16 бит/слово
  • Емкость памяти: 64 килослова (128Кбайт)
  • Разрядность шины данных: 16 бит
  • Единое адресное пространство кода и данных (Архитектура Фон-Неймана)
  • Тактовая частота (проектная): 100 Гц, 1 инструкция/такт
  • Набор инструкций: Brainfuck++
  • Количество реле (проектное): 792
  • Используемые реле: герконовые, РЭС55(1п), РЭС64(1з)

Подробности подкатом

Общий принцип работы

Рассмотрим обобщенную структуру компьютера:

Релейная плата своими руками

Рисунок 1: Обобщенная структура компьютера

Центральным элементом является Сумматор, причем не простой, а с параллельным переносом. Зачем это нужно — расскажу чуть ниже.

Программа и данные хранятся в блоке памяти. Доступ к ним осуществляется по адресу, записанному в регистре инструкций IP, либо в регистре адреса AP, исходя из того, что мы сейчас хотим прочитать — данные по адресу, указанному в AP, либо инструкцию, записанную по адресу IP.

Чтобы оперировать этой лентой Тьюринга (а Brainfuck язык программирования отождествляет именно её), нам надо иметь возможность совершить одно из трех действий:

  • Изменять значение в текущей ячейке данных, то бишь делать операции Add/Sub. В Brainfuck значение в ячейке можно изменить только на единицу, т.е. +1 либо -1. Но имея полноценный сумматор грешно не схлопнуть длинные цепочки ++++++++++++(————) в одну операцию AP+=N(AP-=N) существенно ускорив процесс вычисления. (также не забудем превратить [-](или [+]) в *AP=0);
  • Изменять номер текущей выбранной ячейки данных. То бишь гулять по памяти данных (AP++, AP—);
  • Изменять номер текущей инструкции. Во-первых, нам нужно после выполнения каждой инструкции увеличивать значение в регистре IP на единицу. Во-вторых, изменять это значение при наличии ветвлений в коде (по умолчанию для организации циклов). Контрольный флаг всего один — Z. Соответственно есть команды JumpIfZero и JumpIfNotZero.

Итого нам надо иметь возможность подавать на один вход сумматора значение любого из следующих трех блоков — AP-регистра, IP-регистра, DATA-шины. Делать это будем через временный регистр, в котором будем сохранять одно из требуемых значений, подключая нужный с помощью 16-разрядных ключей.

На второй вход сумматора будем подавать число, на которое одно из этих значений должно изменяться в плюс или минус. В виду ограниченной ширины инструкции, изменять можно только на +-12битное число. Впрочем для Brainfuck это более чем достаточно(«хватит всем», ага).

Брать эти 12 бит мы будем с регистра команд, при наличии таких команд естественно, ибо часть команд не использует сумматор вовсе. Не забудем что отрицательные числа будут подаваться в дополненном коде, с подачей на доп. вход переноса единицы (т.е.

будет A+ invB + 1)

Результат вычисления сразу загружаем туда, откуда мы его взяли. Из-за временного регистра делать это мы можем безболезненно.

Более подробно (я бы даже сказал — занудно) об архитектуре можно узнать из этого видео:

Набор инструкций

Нарисовав общую принципиальную схему, способную реализовать 8 основных Brainfuck-инструкций, я понял, что у нее гораздо больший потенциал. Поэтому я разработал более широкий набор инструкций, совместимый с Brainfuck, однако требующий компиляции каждой исходной Brainfuck-инструкции в 16-разрядную инструкцию компьютера.

Общее описание инструкции

Все инструкции 16-разрядные. Формируются из нескольких частей.

  • Биты 15, 14, 13 — определяют класс инструкции
  • Бит 12 — Знаковый бит для знаковых инструкций
  • Биты 11-0 — содержат младшие 12 бит знакового int-a. Старшие 4 бита формируются согласно значению 12-го бита.

Таблица инструкций

Инструкция Опкод Операция Эквивалент из Brainfuck Описание
add m16 0X XX AP ← AP + m16 '+' (Повторить m16 раз) Прибавляет базу к текущему значению выбранной ячейки
sub m16 1X XX AP ← AP — m16 '-' (Повторить m16 раз) Соответственно вычитает базу из числа
ada m16 2X XX AP ← AP + m16 '>' (Повторить m16 раз) Увеличивает значение адреса
ads m16 3X XX AP ← AP — m16 '

Источник: https://habr.com/post/402629/

Реле времени своими руками: как собрать самостоятельно

Активизировать и отключать бытовую технику можно без присутствия и участия пользователя. Большинство выпускаемых в наши дни моделей оснащено реле времени для автоматического запуска/остановки.

Что делать, если точно так же хочется управлять устаревшим оборудованием? Запастись терпением, нашими советами и сделать реле времени своими руками – поверьте, этой самоделке найдется применение в хозяйстве.

Мы готовы помочь вам осуществить интересную задумку и попробовать свои силы на пути самостоятельного электротехника. Для вас мы нашли и систематизировали все ценные сведения о вариантах и способах изготовления реле. Использование представленной информации гарантирует простоту сборки и отличную работу прибора.

В предложенной к изучению статье подробно разобраны опробованные на практике самодельные варианты устройства. Сведения опираются на опыт увлеченных электротехникой мастеров и требования нормативов.

Сфера применения реле времени

Человек всегда стремился облегчить себе жизнь, внедряя в обиход разные приспособления. С появлением техники на базе электродвигателя встал вопрос об оснащении ее таймером, который управлял бы этим оборудованием автоматически.

Включил на заданное время – и можно идти заниматься другими делами. Агрегат по истечении установленного периода сам отключится. Вот для такой автоматизации и потребовалось реле с функцией автотаймера.

Классический пример рассматриваемого устройства – это в реле в старой стиральной машинке советского образца. На ее корпусе имелась ручка с несколькими делениями. Выставил нужный режим, и барабан крутится в течение 5–10 минут, пока часики внутри не дойдут до нуля.

Электромагнитное реле времени небольшое по габаритам, потребляет мало электроэнергии, не имеет ломающихся подвижных частей и долговечно

Читайте также:  Домашний усилитель звука своими руками

Сегодня реле времени устанавливают в различную технику:

  • микроволновки, печи и иную бытовую технику;
  • вытяжные вентиляторы;
  • системы автополива;
  • автоматику управления освещением.

В большинстве случаев прибор делают на основе микроконтроллера, который одновременно и управляет всеми остальными режимами работы автоматизированной техники. Производителю так дешевле. Не надо тратиться на несколько отдельных устройств, отвечающих за что-то одно.

По типу элемента на выходе реле времени классифицируют на три вида:

  • релейные – нагрузка подключается через «сухой контакт»;
  • симисторные;
  • тиристорные.

Наиболее надежен и устойчив к всплескам в сети первый вариант. Устройство с коммутирующим тиристором на выходе следует брать, только если подключаемая нагрузка нечувствительна к форме питающего напряжения.

Чтобы самостоятельно изготовить реле времени, также можно воспользоваться микроконтроллером. Однако самоделки в основном делаются для простых вещей и условий работы. Дорогой программируемый контроллер в такой ситуации – лишняя трата денег.

Есть гораздо более простые и дешевые в исполнении схемы на основе транзисторов и конденсаторов. Причем вариантов существует несколько, выбрать для своих конкретных нужд есть из чего.

Схемы различных самоделок

Все предлагаемые варианты изготовления своими руками реле времени построены на принципе запуска установленной выдержки. Сначала запускается таймер с заданным временным интервалом и обратным отсчетом.

Подключенное к нему внешнее устройство начинает работать – включается электродвигатель или свет. А затем, по достижении нуля, реле выдает сигнал на отключение этой нагрузки или перекрывает ток.

Вариант #1: самый простой на транзисторах

Схемы на базе транзисторного исполнения – наиболее легкие в реализации. Простейшая из них включает в себя всего восемь элементов. Для их соединения даже не потребуется плата, все можно спаять без нее. Подобное реле часто делают, чтобы подключить через него освещение. Нажал кнопку – и свет горит в течение пары минут, а потом сам отключается.

Для питания этой схемы требуются батарейки на 9 или аккумуляторы на 12 Вольт, также такое реле можно запитать от переменных 220 В посредством преобразователя на постоянные 12 В (+)

Чтобы собрать это самодельное реле времени, потребуется:

  • пара резисторов (100 Ом и 2,2 мОм);
  • биполярный транзистор КТ937А (либо аналог);
  • реле переключения нагрузки;
  • переменный резистор на 820 Ом (для регулировки временного интервала);
  • конденсатор на 3300 мкФ и 25 В;
  • выпрямительный диод КД105Б;
  • переключатель для запуска отсчета.

Задержка времени в этом реле-таймере происходит за счет зарядки конденсатора до уровня питания ключа транзистора. Пока C1 заряжается до 9–12 В ключ в VT1 остается открытым. Внешняя нагрузка запитана (свет горит).

Через некоторое время, которое зависит от выставленного значения на R1, происходит закрытие транзистора VT1. Реле K1 в итоге обесточивается, а нагрузка отключается от напряжения.

Время заряда конденсатора C1 определяется произведением его емкости на общее сопротивление цепи зарядки (R1 и R2). Причем первое из этих сопротивлений фиксировано, а второе регулируемо для задания конкретного интервала.

Временные параметры для собранного реле подбираются опытным путем выставлением различных значений на R1. Чтобы впоследствии легче было выполнять уставку нужного времени, на корпусе следует сделать разметку с поминутным позиционированием.

Указать формулу расчета выдаваемых задержек для такой схемы проблематично. Многое зависит от параметров конкретного транзистора и остальных элементов.

Приведение реле в исходное положение производится обратным переключением S1. Конденсатор замыкается на R2 и разряжается. После повторного включения S1 цикл запускается заново.

Один транзистор можно заменить цепью из пары аналогичных, что только повысит стабильность работы собираемого реле времени (+)

В схеме с двумя транзисторами первый участвует в регулировке и управлении временной паузой. А второй – это электронный ключ для включения и отключения питания у внешней нагрузки.

В варианте со сдвоенной схемой один из ключей Б1 “запускает таймер” и включает нагрузку, а второй Б2 отключает ее (+)

Самое сложное в данной модификации – это точно подобрать сопротивление R3.

Оно должно быть таким, чтобы реле замыкалось исключительно при подачи сигнала с Б2. При этом обратное включение нагрузки обязано происходить только при срабатывании Б1.

Подбирать его придется экспериментально.

Чтобы повысить интервал задержки реле времени, КТ937А можно заменить полевым транзистором с изолированным затвором (например, 2N7000) (+)

У этого типа транзисторов ток затвора очень мал.

Если обмотку сопротивления в управляющем реле-ключе подобрать большую (в десятки Ом и МОм), то интервал отключения можно увеличить до нескольких часов.

Причем большую часть времени реле-таймер практически не потребляет энергии.

Активный режим в нем начинается на последней трети данного интервала. Если РВ подключить через обычную батарейку, то прослужит она очень долго.

Вариант #2: на базе микросхем

У транзисторных схем есть два основных минуса. Для них сложно рассчитать время задержки и перед очередным пуском требуется разряжать конденсатор. Использование микросхем нивелирует эти недостатки, но усложняет устройство.

Однако при наличии даже минимальных навыков и познаний в электротехнике сделать своими руками подобное реле времени также не составит труда.

Если задержка требуется в интервале от десяти минут до часа, то транзистор лучше всего заменить микросхемой серии TL431 (+)

Порог открытия у TL431 более стабильный за счет наличия внутри источника опорного напряжения. Плюс для ее переключения вольтаж требуется гораздо больший. На максимуме, за счет увеличения значения R2, его можно поднять до 30 В.

Конденсатор до таких значений будет заряжаться долго. К тому же подключения C1 на сопротивление для разрядки в этом случае происходит автоматически. Дополнительно нажимать на SB1 здесь не нужно.

Еще один вариант – это применение «интегрального таймера» NE555. В этом случае задержка также определяется параметрами двух сопротивлений (R2 и R4) и конденсатора (C1).

“Выключение” реле происходит за счет переключения опять же транзистора. Только его закрытие здесь выполняется по сигналу с выхода микросхемы, когда она отсчитает нужные секунды.

“Таймер” на основе микросхемы NE555 во многом повторяет классический вариант на одном транзисторе, но интервал задержек здесь выставляется более точный (от 1 секунды до нескольких минут и часов) (+)

Ложных срабатываний при использовании микросхем выходит гораздо меньше, нежели при применении транзисторов. Токи в этом случае контролируются жестче, транзистор открывается и закрывается именно тогда, когда требуется.

Еще один классический микросхемный вариант реле времени основан на базе КР512ПС10. В этом случае при включении питания цепь R1C1 подает на вход микросхемы импульс сброса, после чего в ней запускается внутренний генератор. Частоту отключения (коэффициент деления) последнего задает регулирующая цепь R2C2.

Количество подсчитываемых импульсов определяется коммутацией пяти выводов M01–M05 в различных комбинациях. Время задержки можно выставить от 3 секунд до 30 часов.

После отсчета указанного числа импульсов на выходе микросхемы Q1 устанавливается высокий уровень, открывающий VT1. В результате срабатывает реле K1 и включает либо выключает нагрузку.

Схема сборки реле времени с помощью микросхемы КР512ПС10 не отличается сложностью, сброс в исходное состояние в таком РВ происходит автоматически при достижении заданных параметров за счет соединения лапок 10 (END) и 3 (ST) (+)

Существуют еще более сложные схемы реле времени на базе микроконтроллеров. Однако для самостоятельной сборки они мало подходят. Здесь сказываются сложности как с пайкой, так и с программированием. Вариаций с транзисторами и простейшими микросхемами для бытового применения вполне хватает в подавляющем большинстве случаев.

Вариант #3: под питание на выходе 220 В

Все вышеописанные схемы рассчитаны на 12-вольтовое выходное напряжение. Чтобы подключить к собранному на их основе реле времени мощную нагрузку, необходимо на выходе устанавливать магнитный пускатель. Для управления электродвигателями или иной сложной электротехникой с повышенной мощностью так и придется делать.

Однако для регулировки бытового освещения можно собрать реле на базе диодного моста и тиристора. При этом подключать через такой таймер что-либо иное не рекомендуется. Тиристор пропускает сквозь себя только положительную часть синусоиды переменных 220 Вольт.

Для лампочки накаливания, вентилятора или ТЭНа это не страшно, а другое электрооборудование подобного может не выдержать и сгореть.

Схема реле времени с тиристором на выходе и диодным мостом на входе рассчитана на работу в сетях 220 В, но имеет ряд ограничений по типу подключаемой нагрузки (+)

Для сборки подобного таймера для лампочки необходимы:

  • сопротивления постоянные на 4,3 МОм (R1) и 200 Ом (R2) плюс регулируемое на 1,5 кОм(R3);
  • четыре диода с максимальным током выше 1 А и обратным напряжением от 400 В;
  • конденсатор на 0,47 мкФ;
  • тиристор ВТ151 или аналогичный;
  • выключатель.

Функционирует это реле-таймер по общей схеме для подобных устройств, с постепенной зарядкой конденсатора. При смыкании на S1 контактов С1 начинает заряжаться.

В течение этого процесса тиристор VS1 остается открытым. В итоге на нагрузку L1 поступает сетевое напряжение 220 В. После завершения зарядки С1 тиристор закрывается и отсекает ток, выключая лампу.

Регулировка задержки производится выставлением значения на R3 и подбором емкости конденсатора. При этом надо помнить, что любое прикосновение к оголенным ножкам всех использованных элементов грозит поражением током. Они все находятся под напряжение 220 В.

Если нет желания экспериментировать и самостоятельно заниматься сборкой реле времени, можно подобрать готовые  варианты выключателей и розеток с таймером.

Подробнее о таких устройствах написано в статьях:

Выводы и полезное видео по теме

Разобраться с нуля во внутреннем устройстве реле времени часто бывает сложно. У одних не хватает познаний, а у других опыта. Чтобы упростить вам выбор нужной схемы, мы сделали подборку видеоматериалов, в которых подробно рассказывается обо всех нюансах работы и сборки рассматриваемого электронного девайса.

  • Принцип работы элементов реле времени на транзисторном ключе:
  • Автоматический таймер на полевом транзисторе для нагрузки 220 В:
  • Пошаговое изготовление реле задержки своими руками:

Собрать самостоятельно реле времени не слишком сложно – есть несколько схем для реализации этого замысла. Все они основаны на постепенной зарядке конденсатора и открытии/закрытии транзистора или тиристора на выходе.

Если нужен простой прибор, то лучше взять транзисторную схему. Но для точного контроля времени задержки придется паять один из вариантов на той или иной микросхеме.

Если у вас есть опыт сборки такого устройства, пожалуйста, поделитесь информацией с нашими читателями. Оставляйте комментарии, прикрепляйте фотографии своих самоделок и участвуйте в обсуждениях. Блок для связи расположен ниже.

Источник: https://sovet-ingenera.com/elektrika/rele/rele-vremeni-svoimi-rukami.html

Ссылка на основную публикацию
Adblock
detector