Намотка импульсного трансформатора своими руками

Часть 1

Пролог

И все таки меня пригласили! Теперь дело со статьями пойдет более оперативно.

Темой следующей части изначально я хотел сделать схемотехнику какого нибудь блока, а чего ждать? Но тут вспомнил свою школьную молодость и саму великую проблему с которой сталкивался — как изготовить неведомое для меня на тот момент зверя устройство — импульсный трансформатор.

Прошло десять лет и я понимаю, что у многих (и не только начинающих) радиолюбителей, электронщиков и студентов возникают такие трудности — они попросту их боятся, а как следствие стараются избегать мощных импульсных источников питания (далее ИИП).

После этих размышлений я пришел к выводу, что первая тема должна быть именно про трансформатор и ни о чем другом! Хотелось бы еще оговориться: что я подразумеваю под понятием «мощный ИИП» — это мощности от 1 кВт и выше или в случае любителей хотя бы 500 Вт. Намотка импульсного трансформатора своими руками Рисунок 1 — Вот такой трансформатор на 2 кВт для Н-моста у нас получится в итоге

Великая битва или какой материал выбрать?

Когда-то внедрив в свой арсенал импульсную технику думал, что трансформаторы можно делать только на доступном всем феррите. Собрав первые конструкции первым делом решил выставить их на суд более опытных товарище и очень часто слышал такую фразу: «Ваш феррит гавно не самый лучший материал для импульсника».

Сразу я решил узнать у них какую же альтернативу можно ему противоспоставить и мне сказали — альсифер или как его еще называют синдаст.

Для начала надо определиться что должен уметь почти идеальный материал для трансформатора:

1) должен быть магнитомягким, то есть легко намагничиваться и размагничиваться:

Намотка импульсного трансформатора своими руками Рисунок 2 — Гистерезисные циклы ферромагнетиков: 1) жесткий цикл, 2) мягкий цикл 2) материал должен обладать как можно большей индукцией насыщения, что позволит либо уменьшить габариты сердечника, либо при их сохранение повысить мощность. НасыщениеЯвление насыщения трансформатора состоит в том, что, несмотря на увеличение тока в обмотке, магнитный поток в сердечнике, достигнув некоторой максимальной величины, далее практически не изменяется. В трансформаторе режим насыщения приводит к тому, что передача энергии из первичной обмотки во вторичную частично прекращается. Нормальная работа трансформатора возможна лишь тогда, когда магнитный поток в его сердечнике изменяется пропорционально изменению тока в первичной обмотке. Для выполнения этого условия необходимо, чтобы сердечник не был в состоянии насыщения, а это возможно лишь тогда, когда его объём и сечение не меньше вполне определённой величины. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник. 3) материал должен иметь как можно меньшие потери на перемагничивание и токи Фуко 4) свойства материала не должны сильно изменяться при внешнем воздействии: механические усилия (сжатие или растяжение), изменение температуры и влажности. Феррит — является полупроводником, а значит обладает собственным высоким электрическим сопротивлением. Это означает, что на высоких частотах потери на вихревые токи (токи Фуко) будут достаточно низкими. Получается как минимум одно условия из списка выше у нас уже выполнено. Идем дальше… Ферриты бывают термостабильными и не стабильными, но этот параметр не является определяющим для ИИП. Важно то, что ферриты работают стабильно в температурном диапазоне от -60 и до +100 оС и это у самый простых и дешевых марок. Намотка импульсного трансформатора своими руками Рисунок 3 — Кривая намагничивания на частоте 20 кГц при разных температурах

И наконец-то самый главный пункт — на графике выше мы увидели параметр, который будет определять практически все — индукция насыщения. Для феррита она обычно принимается 0,39 Тл. Стоит запомнить, что при разных условиях — этот параметр будет меняться. Он зависит как от частоты, так и от температуры работы и от других параметров, но особый акцент стоит сделать на первых двух.

Вывод: феррит ништяк! отлично подходит для наших задач.

1) альсифер работает в чуть большем широком спектре температур: от -60 и до +120 оС — подходит? Еще лучше чем феррит! 2) коэффициент потерь на гистерезис у альсиферов постоянный лишь в слабых полях (при малой мощности), в мощном поле они растут и очень сильно — это очень серьезный минус, особенно на мощностях более 2 кВт, так что тут проигрывает.

3) индукция насыщения до 1,2 Тл!, в 4 раза больше чем у феррита! — главный параметр и так обгоняет, но не все так просто… Конечно это достоинство никуда не уйдет, но пункт 2 ослабляет его и очень сильно — определенно плюс.

Вывод: альсифер лучше чем феррит, в этом дядьке мне не соврали.

Результат битвы: любой прочитав описание выше скажет альсифер нам подавай! И правильно… но попробуйте найти сердечник из альсифера и чтобы с габаритной мощностью 10 кВт? Тут обычно человек приходит в тупик, оказывается их и нету особо в продаже, а если и есть, то на заказ напрямую у производителя и цена вас испугает.

Получается используем феррит, тем более если оценивать в целом, то он проигрывает очень незначительно… феррит оценивается относительно альсифера в «8 из 10 попугаев». Хотел я обратиться к своему любимому матану, но решил этого не делать, т.к. +10 000 знаков к статье считаю избыточным. Могу лишь посоветовать книгу с очень хорошими расчетами авторства Б. Семенова «Силовая электроника: от простому к сложному». Смысла пересказывать его выкладки с некими добавлениями смысла не вижу

Итак, приступаем к выполнению расчета и изготовлению трансформатора

Первым делом хочется сразу вспомнить очень серьезный момент — зазор в сердечнике. Он может «убить» всю мощность или добавить еще так на 30-40%. Хочу напомнить, что делаем мы трансформатор для Н-моста, а он относится к — прямоходовым преобразователям (forward по-буржуйский). Это значит, что зазор в идеале должен быть 0 мм.

Как-то раз, обучаясь курсе на 2-3 решил собрать сварочный инвертор, обратился к топологии инверторов Kemppi. Там я увидел в трансформаторах зазор 0,15 мм. Стало интересно для чего же он.

Подходить к преподавателям не стал, а взял и позвонил в российское представительство Kemppi! А что терять? На моей удивление меня соединили с инженером-схемотехником и он рассказал мне несколько теоретических моментов, которые позволили мне «выползти» за потолок в 1 кВт.

Если в кратцезазор в 0,1-0,2 мм просто необходим! Это увеличивает скорость размагничивания сердечника, что позволяет прокачать через трансформатор большую мощность. Максимальный эффект от такого финта ушами зазора достиг в топологии «косой мост», там введение зазор 0,15 мм дает прирост 100%! В нашем Н-мосту эта прибавка скромнее, но 40-60% думаю тоже не дурно.

Для изготовления трансформатора нам понадобится вот такой набор: Намотка импульсного трансформатора своими руками Рисунок 4 — Ферритовый сердечник Е70/33/32 из материала 3С90 (чуть лучший аналог N87) Намотка импульсного трансформатора своими руками Рисукок 5 — Каркас для сердечника Е70/33/32 (тот что больше) и дроссель D46 из распыленного железа Габаритная мощность такого трансформатора составляет 7,2 кВт. Такой запас нам нужен для обеспечения пусковых токов в 6-7 раз больше номинальных (600% по ТЗ). Такие пусковые токи правда бывают лишь у асинхронных двигателей, но учесть необходимо все! Неожиданно «всплыл» некий дроссель, он понадобится в нашей дальнейшей схеме (аж 5 штук) и поэтому решил показать как и его наматывать.

Далее необходимо посчитать параметры намотки. Я использую программу от известного в определенных кругах товарища Starichok51. Человек с огромными знаниями и всегда готовый учить и помогать, за что ему спасибо — в своей время помог встать на путь истинный. Называется программа — ExcellentIT 8.1.

Привожу пример расчета на 2 кВт:Намотка импульсного трансформатора своими руками Рисунок 6 — Расчет импульсного трансформатора по мостовой схеме на 2 кВт повышающий

Как производить расчет:

1) Выделено красным. Это вводные параметры, которые обычно выставляются по умолчанию: а) максимальная индукция. Помните для феррита она 0,39 Тл, но у нас трансформатор работает на достаточно высокой частоте, поэтому программа выставляет 0,186 сама.

Это индукция насыщения в саааамых плохих условиях, включая нагрев до 125 градусов

б) частота преобразования, она задается нами и чем она определяется на схеме будет в следующих статьях. Частота эта должна быть от 20 до 120 кГц.

Если меньше — мы будет слышать работу транса и свист, если выше, то наши ключи (транзисторы) будут иметь большие динамические потери. А IGBT ключи даже дорогие работают до 150 кГц

в) коэф. заполнения окна — важный параметр, ибо место на каркасе и сердечнике ограничено, не стоит его делать больше 0,35 иначе обмотки не влезут

г) плотность тока — этот параметр может быть до 10 А/мм2. Это максимальный ток, который может протекать через проводник. Оптимальное значение 5-6 А/мм2 — в условиях жесткой эксплуатации: плохое охлаждение, постоянная работа на предельной нагрузке и прочее. 8-10 А/мм2 — можно ставить если у вас устройство идеально вентилируется и стоит over 9000 несколько куллеров.

д) питание на входе. Т.к. мы рассчитываем трансформатор для DC->DC 48В в 400В, то ставим входное напряжение как в расчете. Откуда цифра взялась. В разряженном состоянии аккумулятор отдает 10.5В, дальше разряжать — снижать срок службы, умножаем на количество батарей (4 шт) и получаем 42В. Возьмем с запасом 40В. 48В берется из произведения 12В * 4 шт. 58В берется из соображения, что в заряженном состоянии батарея имеет напряжение 14,2-14,4В и по аналогии умножаем на 4. 2) Выделено синим. а) ставим 400В, т.к. это запас для обратной связи по напряжению и для нарезки синуса необходимо минимум 342В б) номинальный ток. Выбираем из соображения 2400 Вт / 220(230) В = 12А. Как видите везде я беру запас не менее 20%. Так поступает любой уважающий себя производитель качественной техники. В СССР такой запас был эталонный 25% даже для самых сложных условий. Почему 220(230)В — это напряжение на выходе уже чистого синуса. в) минимальный ток. Выбирается из реальных условий, этот параметр влияет на размер выходного дросселя, поэтому чем больше минимальный ток, тем меньше дроссель, а значит и дешевле устройство. Я опять же выбрал худший вариант 1А, это ток на 2-3 лампочки или 3-4 роутеров. г) падение на диодах. Т.к. у нас на выходе будут диоды быстродействующие (ultra-fast), то падение на них 0.6В в худших условиях (превышена температура). д) диаметр провода. У меня некогда купленная катушка меди 20 кг на такой случай и как раз с диаметром 1 мм. Тут ставим тот, который у вас есть. Только более 1,18 мм ставить не советую, т.к. начнет сказываться скин-эффект Скин-эффектСкин-эффект — эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В результате этого эффекта, например, переменный ток высокой частоты при протекании по проводнику распределяется не равномерно по сечению, а преимущественно в поверхностном слое. Если говорить не как гугл, а моим колхозным языком, то если взять проводник большого сечения, то он не будет использоваться полностью, т.к. токи на большей частоте протекают по поверхности, а центр проводника будет «пустой» 3) Выделено зеленым. Тут все просто — топология у нас планируется «полный мост» и выбираем ее. 4) Выделено оранжевым. Происходит процесс выбора сердечника, все интуитивно понятно. Большое количество стандартных сердечников уже есть в библиотеки, как и наш, но если что можно и добавить путем ввода габаритов. 5) Выделено фиолетовым. Выходные параметры с расчетами. Отдельным окном выделил коэф. заполнения окна, помните — не более 0,35, а лучше не более 0,3. Так же даны все необходимые значения: количество витков для первичной и вторичной обмотки, количество проводов ранее заданного диаметра в «косе» для намотки. Так же даны параметры для дальнейшего расчета выходного дросселя: индуктивность и пульсации напряжения.

Читайте также:  Деревянная приставная лестница своими руками

Теперь необходимо рассчитать выходной дроссель. Нужен он чтобы сгладить пульсации, а так же чтобы создать «равномерный» ток. Расчет проводится в программе того же автора и называется она DrosselRing 5.0. Расчет для нашего трансформатора приведу:

Намотка импульсного трансформатора своими руками Рисунок 7 — Расчет выходного дросселя для повышающего DC-DC преобразователя В данном расчете все проще и понятнее, работает по тому же принципу, выходные данные: количество витков и количество проводов в косе.

Стадии изготовления

Теперь у нас есть все данные для изготовления трансформатора и дросселя.

Главное правило намотки импульсного трансформатора — все без исключения обмотки должны быть намотаны в одну сторону!

Стадия 1: Намотка импульсного трансформатора своими руками Рисунок 8 — Процесс намотки вторичной (высоковольтной) обмотки

Мотаем на каркас необходимое число витков в 2 провода диаметром 1 мм. Запоминаем направление намотки, а лучше отмечаем маркером на каркасе.

Стадия 2:

Намотка импульсного трансформатора своими руками Рисунок 9 — Изолируем вторичную обмотку Изолируем вторичную обмотку фторопластовой лентой толщиной 1 мм, такая изоляция выдерживает не менее 1000 В. Так же дополнительно пропитываем лаком, это еще +600В к изоляции. Если нету фторопластовой ленты, то изолируем обычным сантехническим фумом в 4-6 слоев. Это тот же фторопласт, только 150-200 мкм толщиной.

Стадия 3:

Намотка импульсного трансформатора своими руками Рисунок 10 — Начинаем мотать первичную обмотку, распаиваем провода на каркас Намотку проводим в одну сторону со вторичной обмоткой!

Стадия 4:

Рисунок 11 — Выводим хвост первичной обмотки Доматывает обмотку, изолируем ее так же фторопластовой лентой. Желательно еще и пропитать лаком.

Стадия 5:

Рисунок 12 — Пропитываем лаком и распаиваем «хвост». Намотка обмоток окончена Стадия 6: Рисунок 13 — Завершаем намотку и изоляцию трансформатора киперной лентой с окончательной пропиткой в лаке Киперная лентаКиперная лента — хлопчатобумажная (реже шёлковая или полушелковая) тесьма из киперной ткани шириной от 8 до 50 мм, саржевого или диагонального переплетения; суровая, отбельная или гладкокрашеная. Материал ленты отличается высокой плотностью за счет переплетения, он толще, чем у своего ближайшего аналога — миткалевой ленты — из-за использования более толстых нитей. Спасибо википедии.

Стадия 7:

Рисунок 14 — Так выглядит законченный вариант трансформатора

Зазор 0,15 мм устанавливается в процессе склеивания, путем вкладывания между половинками сердечника подходящей пленки. Лучший вариант — пленка для печати. Сердечник склеивается клеем моментом (хорошим) или эпоксидной смолой. 1-й вариант на века, 2-й позволяет в случае чего разобрать трансформатор без повреждений, например, если понадобится домотать еще обмотку или добавить витков.

Намотка дросселя

Теперь по аналогии необходимо намотать дроссель, конечно мотать на тороидальном сердечнике сложнее, но такой вариант будет компактнее. Все данные у нас имеются из программы, материал сердечника распыленное железо или пермаллой. Индукция насыщения у данного материала 0,55 Тл.

Стадия 1:

Рисунок 15 — Обматываем кольцо фторопластовой лентой Эта операция позволяет избежать случая с пробоем обмотки на сердечник, это бывает редко, но мы же за качество и делаем для себя!

Стадия 2:

Рисунок 16 — Наматываем нужное количество витков и изолируем В данном случае количество витков не уместится в один слой намотки, поэтому необходимо после намотки первого слоя произолировать и намотать второй слой с последующей изоляцией.

Стадия 3:

Рисунок 17 — Изолируем после второго слоя и пропитываем лаком

Эпилог

Надеюсь моя статья научит вас процессу расчету и изготовлению импульсного трансформатора, а так же даст вам некоторые теоретические понятия о его работе и материалах из которого он изготавливается.

Постарался не нагружать данную часть излишней теорией, все на минимуму и сосредоточиться исключительно на практических моментах.

И самое главное на ключевых особенностях, которые влияют на работоспособность, таких как зазор, направления намотки и прочее.

Продолжение следует…

Часть 3

Источник: https://habr.com/post/358318/

Небольшой ликбез по намотке импульсных трансформаторов. — Лада 2109, 1.6 л., 1988 года на DRIVE2

Как видно из пред идущего блога я собираю слабенький усилитель на 100ват, и многие просили поподробнее рассказать как мотать эти трансформаторы)Обьект намотки кольца 45х28х8 проницаемость Н1500М в моем случае 4ре штуки.

Обьясняю почему… Забиваем в программу кольцо 45х28х8 и видим что габаритная мощность его одного всего 500 жалких ничтожных ватт… а выход прост берем 2 кольца притираем их друг к другу чтоб небыло зазоров и без клея скремляем их вкруговую изолентой.ВСЕ!Далее в проге вбиваем уже кольцо 45х28х16 и видим габаритную мощность 1000ватт.

Далее пишем проге че хотим то собственно от него в моем случае хочу 85 вольт и 1кВт.Выбираем как будет выпрямляться под свои нужды и тыкаем рассчитать.

  • Получаем резззззз и собственно берем проволку медную и вперед к намотке смотрим ниже=)

Намотка импульсного трансформатора своими руками

Затарился кольцами и деталями на пн

Намотка импульсного трансформатора своими руками

Вот так они будут располагаться

Намотка импульсного трансформатора своими руками

Притираем 2 кольца и скрепляем изолентой без клея!

Намотка импульсного трансформатора своими руками

Обматываем кольца (кто чем хочет хоть скотчем) в моем случае стекловолокно

Намотка импульсного трансформатора своими руками

По программе нам нужно 4 витка первичной обмотки. Берем кусок проволоки наматываем 4ре витка отмеряем длинну выводов отрезаем сматываем и по этой длинне наматываем на каком либо каркасе нужное нам число жил

Намотка импульсного трансформатора своими руками

отрезал померял

Намотка импульсного трансформатора своими руками

для каждоко кольца наматывал на оправку по две косы по 26 жил в каждой. Далее снимаем 26 жил с оправки немножко их скручиваем и матаем 4ре витка одной и рядышком 4ре витка другой

Намотка импульсного трансформатора своими руками

Сново обматываем туалетной бумагой

Намотка импульсного трансформатора своими руками

в итоге получаем такую картину намотана первичка епли 2 часа

Намотка импульсного трансформатора своими руками

Далее по верх мотаем вторичку снача делаем один виток замеряем его длинну 8,5см умножаем на число витков в моем случае 33 делаем оправку на 2,8 метра длинной в моем случае это 2 самореза между столами.

наматываем сразу 6 жил потом мультиком сфазируем. Делим 33 на 4 и примерно чюхаем на четверть кольца запихиваем 8 витков. наматываем 33 витка скрепляем в конце кто соплями кто приморозит я стекловолокном.

Источник: https://www.drive2.ru/l/6421531/

Расчет и намотка импульсного трансформатора

Сегодня я расскажу о процедуре расчета и намотки импульсного трансформатора, для блока питания на ir2153.

Моя задача стоит в следующем, нужен трансформатор c двумя вторичными обмотками, каждая из которых должна иметь отвод от середины. Значение напряжения на вторичных обмотках должно составить +-50В. Ток протекать будет 3А, что составит 300Вт.

Расчет импульсного трансформатора.

Для начала загружаем себе программу расчета импульсного трансформатора Lite-CalcIT и запускаем её.

Выбираем схему преобразования – полумостовая. Зависит от вашей схемы импульсного источника питания. В статье “Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт” схема преобразования –полумостовая.

Намотка импульсного трансформатора своими руками

Напряжение питания указываем постоянное.  Минимальное = 266 Вольт, номинальное = 295 Вольт, максимальное = 325 Вольт.

  • Намотка импульсного трансформатора своими руками
  • Тип контроллера указываем ir2153, частоту генерации 50кГц.
  • Намотка импульсного трансформатора своими руками

Стабилизации выходов – нет.Принудительное охлаждение – нет.

Намотка импульсного трансформатора своими руками

Диаметр провода, указываем тот, который есть в наличии. У меня 0,85мм. Заметьте, указываем не сечение, а диаметр провода.

Указываем мощность каждой из вторичных обмоток, а также напряжение на них.Я указал 50В и мощность 150Вт в двух обмотках.

  1. Намотка импульсного трансформатора своими руками
  2. Схема выпрямления – двухполярная со средней точкой.
  3. Намотка импульсного трансформатора своими руками

Указанные мною напряжения (50 Вольт) означают, что две вторичных обмотки, каждая из которых имеет отвод от середины, и  после выпрямления, будет иметь +-50В относительно средней точки. Многие подумали бы, что указали 50В, значит, относительно ноля будет 25В в каждом плече, нет! Мы получим 50В вкаждом плече относительно среднего провода.

  • Намотка импульсного трансформатора своими руками
  • Далее выбираем параметры сердечника, в моем случае это “R” – тороидальный сердечник, с размерами 40-24-20 мм.
  • Намотка импульсного трансформатора своими руками

Нажимаем кнопочку “Рассчитать!”. В результате получаем количество витков и количество жил первичной и вторичной обмоток.

  1. Намотка импульсного трансформатора своими руками
  2. Намотка импульсного трансформатора.
  3. Итак, вот мое колечко с размерами 40-24-20 мм.
  4. Намотка импульсного трансформатора своими руками

Теперь его нужно изолировать каким-либо диэлектриком.

Каждый выбирает свой диэлектрик, это может быть лакоткань, тряпочная изолента, стеклоткань и даже скотч, что лучше не использовать для намотки трансформаторов.

Говорят скотч, разъедает эмаль провода, не могу подтвердить данный факт, но я нашел другой минус скотча. В случае перемотки, трансформатор тяжело разбирать, и весь провод становится в клею от скотча.

Я использую лавсановую ленту, которая не плавится как полиэтилен при высоких температурах. А где взять эту лавсановую ленту? Все просто, если есть обрубки экранированной витой пары, то разобрав её вы получите лавсановую пленочку шириной примерно 1,5см. Это самый идеальный вариант, диэлектрик получается красивым и качественным.

  • Скотчем подклеиваем лавсаночку к сердечнику и начинаем обматывать колечко, в пару слоев.

Далее мотаем первичку, в моем случае 33 витка проводом диаметра 0,85мм двумя жилами (это я перестраховался). Мотайте по часовой стрелке, как показано на картинке ниже.

  1. Выводы первичной обмотки скручиваем и залуживаем.
  2. Далее надеваем сверху несколько сантиметров термоусадки и подогреваем.
  3. Следующим шагом вновь изолируем диэлектриком еще пару слоев.

Теперь начинаются самые «непонятки» и множество вопросов. Как мотать? Одним проводом или двумя? В один слой или в два слоя класть обмотку?

В ходе моего расчета я получил две вторичных обмотки с отводом от середины. Каждая обмотка содержит 13+13 витков.

Мотаем двумя жилами, в ту же сторону, как и первичную обмотку. В итоге получилось 4 вывода, два уходящих и два приходящих.

Теперь один из уходящих выводов соединяем с одним из приходящих выводов. Главное не запутаться, иначе получится, что вы соедините один и тот же провод, то есть замкнете одну из обмоток. И при запуске ваш импульсный источник питания сгорит.

Соединили начало одного провода с концом другого. Залудили. Надели термоусадку. Далее вновь обмотаем лавсановой пленкой.

Напомню, что мне нужно было две вторичных обмотки, если вам нужен трансформатор с одной вторичной обмоткой, то на этом этапе финиш. Вторую вторичную обмотку мотаем аналогично.

  • После чего сверху опять обматываем лавсановой пленкой, чтобы крайняя обмотка плотно прилегала и не разматывалась.
  • В результате получили вот такой аккуратный бублик.
  • Таким образом, можно рассчитать и намотать любой трансформатор, с двумя или одной вторичной обмоткой, с отводом или без отвода от середины.
  •  Программа расчета импульсного трансформатора Lite-CalcIT СКАЧАТЬ
  • Статья по перемотке импульсного трансформатора из БП ПК ПЕРЕЙТИ.
Читайте также:  Лёгкая походная печка своими руками

Источник: http://audio-cxem.ru/stati/raschet-i-namotka-impulsnogo-transformatora.html

Как рассчитать и намотать импульсный трансформатор?

Как рассчитать и намотать импульсный трансформатор для полумостового блока питания? Намотка импульсного трансформатора своими руками

В этой статье рассказано о том, как рассчитать и намотать импульсный трансформатор для самодельного полумостового блока питания, который можно изготовить из электронного балласта сгоревшей компактной люминесцентной лампочки.

Речь пойдёт о «ленивой намотке». Это когда лень считать витки. https://oldoctober.com/

Намотка импульсного трансформатора своими руками Намотка импульсного трансформатора своими руками Намотка импульсного трансформатора своими руками Намотка импульсного трансформатора своими руками

Близкие темы.

  • Как за час сделать импульсный блок питания из сгоревшей лампочки?
  • Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?
  • Самодельный импульсный преобразователь напряжения из 1,5 в 9 Вольт для мультиметра.

Оглавление статьи.

Выбор типа магнитопровода

Намотка импульсного трансформатора своими руками

Наиболее универсальными магнитопроводами являются Ш-образные и чашкообразные броневые сердечники. Их можно применить в любом импульсном блоке питания, благодаря возможности установки зазора между частями сердечника. Но, мы собираемся мотать импульсный трансформатор для двухтактного полумостового преобразователя, сердечнику которого зазор не нужен и поэтому вполне сгодится кольцевой магнитопровод. https://oldoctober.com/

Для кольцевого сердечника не нужно изготавливать каркас и мастерить приспособление для намотки. Единственное, что придётся сделать, так это изготовить простенький челнок.

Намотка импульсного трансформатора своими руками

  1. На картинке изображён ферритовый магнитопровод М2000НМ.
  2. Идентифицировать типоразмер кольцевого магнитопровода можно по следующим параметрам.
  3. D – внешний диаметр кольца.
  4. d – внутренний диаметр кольца.
  5. H – высота кольца.
  6. В справочниках по ферритовым магнитопроводам эти размеры обычно указываются в таком формате: КDxdxH.
  7. Пример: К28х16х9
  8. Вернуться наверх к меню.

Получение исходных данных для простого расчёта импульсного трансформатора

Напряжение питания.

Помню, когда наши электросети ещё не приватизировали иностранцы, я строил импульсный блок питания. Работы затянулись до ночи. Во время проведения последних испытаний, вдруг обнаружилось, что ключевые транзисторы начали сильно греться. Оказалось, что напряжение сети ночью подскочило аж до 256 Вольт!

  • Конечно, 256 Вольт, это перебор, но ориентироваться на ГОСТ-овские 220 +5% –10% тоже не стоит. Если выбрать за максимальное напряжение сети 220 Вольт +10%, то:
  • 242 * 1,41 = 341,22V (считаем амплитудное значение).
  • 341,22 – 0,8 * 2 ≈ 340V (вычитаем падение на выпрямителе).
  • Индукция.
  • Определяем примерную величину индукции по таблице.
  • Пример: М2000НМ – 0,39Тл.
  • Частота.

Частота генерации преобразователя с самовозбуждением зависит от многих факторов, в том числе и от величины нагрузки. Если выберите 20-30 кГц, то вряд ли сильно ошибётесь.

Граничные частоты и величины индукции широко распространённых ферритов.

Марганец-цинковые ферриты

Параметр Марка феррита
6000НМ 4000НМ 3000НМ 2000НМ 1500НМ 1000НМ
Граничная частота при tg δ ≤ 0,1, МГц 0,005 0,1 0,2 0,45 0,6 1,0
Магнитная индукция B при Hм = 800 А / м, Тл 0,35 0,36 0,38 0,39 0,35 0,35

Никель-цинкове ферриты

Параметр Марка феррита
200НН 1000НН 600НН 400НН 200НН 100НН
Граничная частота при tg δ ≤ 0,1, МГц 0,02 0,4 1,2 2,0 3,0 30
Магнитная индукция B при Hм = 800 А / м, Тл 0,25 0,32 0,31 0,23 0,17 0,44

Вернуться наверх к меню.

Как выбрать ферритовый кольцевой сердечник?

Выбрать примерный размер ферритового кольца можно при помощи калькулятора для расчета импульсных трансформаторов и справочника по ферритовым магнитопроводам. И то и другое Вы можете найти в «Дополнительных материалах».

Вводим в форму калькулятора данные предполагаемого магнитопровода и данные, полученные в предыдущем параграфе, чтобы определить габаритную мощность срдечника.

Не стоит выбирать габариты кольца впритык к максимальной мощности нагрузки. Маленькие кольца мотать не так удобно, да и витков придётся мотать намного больше.

Если свободного места в корпусе будущей конструкции достаточно, то можно выбрать кольцо с заведомо бо’льшей габаритной мощностью.

Намотка импульсного трансформатора своими руками

В моём распоряжении оказалось кольцо М2000НМ типоразмера К28х16х9мм. Я внёс входные данные в форму калькулятора и получил габаритную мощность 87 Ватт. Этого с лихвой хватит для моего 50-ти Ваттного источника питания.

Запустите программу. Выберете «Pacчёт тpaнcфopмaтopa пoлумocтoвoго пpeoбpaзoвaтeля c зaдaющим гeнepaтopoм».

Чтобы калькулятор не «ругался», заполните нолями окошки, неиспользуемые для расчёта вторичных обмоток.

Вернуться наверх к меню.

Как рассчитать число витков первичной обмотки?

Намотка импульсного трансформатора своими руками

Вводим исходные данные, полученные в предыдущих параграфах, в форму калькулятора и получаем количество витков первичной обмотки. Меняя типоразмер кольца, марку феррита и частоту генерации преобразователя, можно изменить число витков первичной обмотки.

Нужно отметить, что это очень-очень упрощённый расчёт импульсного трансформатора.

Но, свойства нашего замечательного блока питания с самовозбуждением таковы, что преобразователь сам адаптируется к параметрам трансформатора и величине нагрузки, путём изменения частоты генерации.

Так что, с ростом нагрузки и попытке трансформатора войти в насыщение, частота генерации возрастает и работа нормализуется. Точно также компенсируются и мелкие ошибки в наших вычислениях.

Я пробовал менять количество витков одного и того же трансформатора более чем в полтора раза, что и отразил в ниже приведённых примерах, но так и не смог обнаружить никаких существенных изменений в работе БП, кроме изменения частоты генерации.

Вернуться наверх к меню.

Как рассчитать диаметр провода для первичных и вторичных обмоток?

Диаметр провода первичных и вторичных обмоток зависит от параметров БП, введённых в форму. Чем больше ток обмотки, тем больший потребуется диаметр провода. Ток первичной обмотки пропорцонален «Используемой мощности трансформатора».

Вернуться наверх к меню.

Особенности намотки импульсных трансформаторов

Намотка импульсных трансформаторов, а особенно трансформаторов на кольцевых и тороидальных магнитопроводах имеет некоторые особенности.

Дело в том, что если какая-либо обмотка трансформатора будет недостаточно равномерно распределена по периметру магнитопровода, то отдельные участки магнитопровода могут войти в насыщение, что может привести к существенному снижению мощности БП и даже привести к выходу его из строя.

Казалось бы, можно просто рассчитать расстояние между отдельными витками катушки так, чтобы витки обмотки уложились ровно в один или несколько слоёв. Но, на практике, мотать такую обмотку сложно и утомительно.

Мы же пытаемся мотать «ленивую обмотку». А в этом случае, проще всего намотать однослойную обмотку «виток к витку».

  1. Что для этого нужно?
  2. Нужно подобрать провод такого диаметра, чтобы он уложился «виток к витку», в один слой, в окно имеющегося кольцевого сердечника, да ещё и так, чтобы при этом число витков первичной обмотки не сильно отличалось от расчётного.
  3. Если количество витков, полученное в калькуляторе, не будет отличаться более чем на 10-20% от количества, полученного в формуле для расчёта укладки, то можно смело мотать обмотку, не считая витков.
  4. Правда, для такой намотки, скорее всего, понадобится выбрать магнитопровод с несколько завышенной габаритной мощностью, что я уже советовал выше.
  5. 1 – кольцевой сердечник.
  6. 2 — прокладка.
  7. 3 – витки обмотки.
  8. D – диаметр по которому можно рассчитать периметр, занимаемый витками обмотки.

На картинке видно, что при намотке «виток к витку», расчетный периметр будет намного меньше, чем внутренний диаметр ферритового кольца. Это обусловлено и диаметром самого провода и толщиной прокладки.

На самом же деле, реальный периметр, который будет заполняться проводом, будет ещё меньше. Это связано с тем, что обмоточный провод не прилегает к внутренней поверхности кольца, образуя некоторый зазор. Причём, между диаметром провода и величиной этого зазора существует прямая зависимость.

  • Не стоит увеличивать натяжение провода при намотке с целью сократить этот зазор, так как при этом можно повредить изоляцию, да и сам провод.
  • По нижеприведённой эмпирической формуле можно рассчитать количество витков, исходя из диаметра имеющегося провода и диаметра окна сердечника.
  • Максимальная ошибка вычислений составляет примерно –5%+10% и зависит от плотности укладки провода.
  • w = π(D – 10S – 4d) / d, где:
  • w – число витков первичной обмотки,
  • π – 3,1416,
  • D – внутренний диаметр кольцевого магнитопровода,
  • S – толщина изолирующей прокладки,
  • d – диаметр провода с изоляцией,
  • / – дробная черта.
  • Как измерить диаметр провода и определить толщину изоляции – рассказано здесь.
  • Для облегчения расчётов, загляните по этой ссылке: Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?
  • Несколько примеров расчёта реальных трансформаторов.
  • ● Мощность – 50 Ватт.
  • Магнитопровод – К28 х 16 х 9.
  • Провод – Ø0,35мм.
  • D = 16мм.
  • S = 0,1мм.
  • d = 0,39мм.
  • w= π (16 – 10*0,1 – 4*0,39) / 0,39 ≈ 108 (витков).
  • Реально поместилось – 114 витков.
  • ● Мощность – 20 Ватт.
  • Магнитопровод – К28 х 16 х 9.
  • Провод – Ø0,23мм.
  • D = 16мм.
  • S = 0,1мм.
  • d = 0,25мм.
  • w = π (16 – 10*0,1 – 4*0,25) / 0,25 ≈ 176 (витков).
  • Реально поместилось – 176 витков.
  • ● Мощность – 200 Ватт.
  • Магнитопровод – два кольца К38 х 24 х 7.
  • Провод – Ø1,0мм.
  • D = 24.
  • S = 0,1мм.
  • d = 1,07мм.
  • w = π (24 – 10*0,1 – 4*1,07) / 1,07 ≈ 55 (витков).
  • Реально поместилось 58 витков.
  • В практике радиолюбителя нечасто выпадает возможность выбрать диаметр обмоточного провода с необходимой точностью.

Если провод оказался слишком тонким для намотки «виток к витку», а так часто бывает при намотке вторичных обмоток, то всегда можно слегка растянуть обмотку, путём раздвигания витков. А если не хватает сечения провода, то обмотку можно намотать сразу в несколько проводов.

Вернуться наверх к меню.

Как намотать импульсный трансформатор?

Вначале нужно подготовить ферритовое кольцо.

Для того чтобы провод не прорезал изоляционную прокладку, да и не повредился сам, желательно притупить острые кромки ферритового сердечника. Но, делать это не обязательно, особенно если провод тонкий или используется надёжная прокладка. Правда, я почему-то всегда это делаю.

  1. При помощи наждачной бумаги скругляем наружные острые грани.
  2. То же самое проделываем и с внутренними гранями кольца.
  3. Чтобы предотвратить пробой между первичной обмоткой и сердечником, на кольцо следует намотать изоляционную прокладку.
  4. В качестве изоляционного материала можно выбрать лакоткань, стеклолакоткань, киперную ленту, лавсановую плёнку или даже бумагу.
  5. При намотке крупных колец с использованием провода толще 1-2мм удобно использовать киперную ленту.
  6. Иногда, при изготовлении самодельных импульсных трансформаторов, радиолюбители используют фторопластовую ленту – ФУМ, которая применяется в сантехнике.
  7. Работать этой лентой удобно, но фторопласты обладают холодной текучестью, а давление провода в области острых краёв кольца может быть значительным.
  8. Во всяком случае, если Вы собираетесь использовать ленту ФУМ, то проложите по краю кольца полоску электрокартона или обычной бумаги.
  9. При намотке прокладки на кольца небольших размеров очень удобно использовать монтажный крючок.
  10. Монтажный крючок можно изготовить из куска стальной проволоки или велосипедной спицы.

Аккуратно наматываем изолирующую ленту на кольцо так, чтобы каждый очередной виток перехлёстывал предыдущий с наружной стороны кольца. Таким образом, изоляция снаружи кольца становится двухслойной, а внутри – четырёх-пятислойной.

Читайте также:  Оригинальная свеча своими руками

Для намотки первичной обмотки нам понадобится челнок. Его можно легко изготовить из двух отрезков толстой медной проволоки.

Необходимую длину провода обмотки определить совсем просто. Достаточно измерить длину одного витка и перемножить это значение на необходимое количество витков. Небольшой припуск на выводы и погрешность вычисления тоже не помешает.

Пример

34(мм) * 120(витков) * 1,1(раз) = 4488(мм)

Если для обмотки используется провод тоньше, чем 0,1мм, то зачистка изоляции при помощи скальпеля может снизить надёжность трансформатора. Изоляцию такого провода лучше удалить при помощи паяльника и таблетки аспирина (ацетилсалициловой кислоты).

Будьте осторожны! При плавлении ацетилсалициловой кислоты выделяются ядовитые пары!

Если для какой-либо обмотки используется провод диаметром менее 0,5мм, то выводы лучше изготовить из многожильного провода. Припаиваем к началу первичной обмотки отрезок многожильного изолированного провода.

Изолируем место пайки небольшим отрезком электрокартона или обыкновенной бумаги толщиной 0,05… 0,1мм.

Наматываем начало обмотки так, чтобы надёжно закрепить место соединения.

Те же самые операции проделываем и с выводом конца обмотки, только на этот раз закрепляем место соединения х/б нитками. Чтобы натяжение нити не ослабло во время завязывания узла, крепим концы нити каплей расплавленной канифоли.

Если для обмотки используется провод толще 0,5мм, то выводы можно сделать этим же проводом. На концы нужно надеть отрезки полихлорвиниловой или другой трубки (кембрика).

Затем выводы вместе с трубкой нужно закрепить х/б нитью.

Поверх первичной обмотки наматываем два слоя лакоткани или другой изолирующей ленты. Это межобмоточная прокладка необходима для надёжной изоляции вторичных цепей блока питания от осветительной сети. Если используется провод диаметром более 1-го миллиметра, то неплохо в качестве прокладки использовать киперную ленту.

Если предполагается использовать выпрямитель с нулевой точкой, то можно намотать вторичную обмотку в два провода. Это обеспечит полную симметрию обмоток.

Витки вторичных обмоток также должны быть равномерно распределены по периметру сердечника. Особенно это касается наиболее мощных в плане отбора мощности обмоток.

Вторичные обмотки, отбирающие небольшую, по сравнению с общей, мощность, можно мотать как попало.

  • Если под рукой не оказалось провода достаточного сечения, то можно намотать обмотку несколькими проводами, соединёнными параллельно.
  • На картинке вторичная обмотка, намотанная в четыре провода.
  • Вернуться наверх к меню.

Дополнительные материалы

Вернуться наверх к меню.

21 Март, 2011 (11:33) в Измерения, Источники питания, Сделай сам

Источник: https://oldoctober.com/ru/pulse_transformer/

Сборка и наладка импульсного блока питания на ir2153 ir2155 своими руками

СБОРКА И НАЛАДКА ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ НА IR2153 IR2155

    Практическую часть статьи рассмотрим на примере схемы №2 первой части сатьи и чтобы не перепрыгивать туда-сюда расположим здесь принципиальную схему данного блока питания:

Намотка импульсного трансформатора своими руками

Принципиальная схема импульсного блока питания на микросхеме IR2153 (IR2155)

    Начинать сборку все равно с чего — либо с монтажа элементов на плату, либо с изготовления моточных деталей. Мы начнем с монтажа, поэтому лучше изучить чертеж расположения деталей повнимательней, к тому же некоторые элементы отличаются от предложенных на принципиальной схеме.     Например номиналы резисторов R16 и R18 отличаются чуть ли не в полтора раза.

В данном случае номиналя этих резисторов не принципиальны и могут располоагаться в пределах от 33 кОм до 100 кОм, поскольку служать прежде всего для разрядки конденсатора С4 при снятии напряжения питания. Второстепенную роль, которую они выполняют, это формировании виртуального нуля, т.е.

создания половины первичного напряжения, что немного предпочтительней простого соеднинения С13 и С14 с шинами питания.

    Резисторы R14 и R17 — формируют небольшую задержку немного увеличивая время реакции системы защиты. Номиналы этих резисторов могут располагаться от 33 Ом до 180 Ом.

Намотка импульсного трансформатора своими руками

Расположение деталей импульсного блока питания

        С13 и С14 — предназначены для развязки по постоянному напряжению обмотки трансформатора, на схеме 1 мкФ, на плате 2,2 мкФ.

При частоте преобразования 60 кГц реактивное сопротивление конденсатора на 1 мкФ будет составлять Хс = 1 / 2пFC = 5,3 Ома, учитывая то, что по «схемному» вариант по переменному напряжению получается паралельное соединение, т.е. получается 2 мкФ, то реактивное сопротивление составит 2,7 Ома.

При протекании через это сопротивление тока в 2 А на конднесаторе будет условное «падение» напряжения всего в 2,7 Ома х 2 А = 5,4 В, что составляет 1,8 %. Другими словами выходное напряжение блока питания будет изменяться менее чем на 2 % под нагрузкой и без нее за счет реактивного сопротивление конденсаторов.

При использовании конденсаторов на 2,2 мкФ в качестве С13 и С14 реактивное сопротивление составляет 1,2 Ома и под нагрузкой оно изменится на 0,8 %.

Учитывая то, что напряжениесети может колебаться до 7% и это считается нормой изменения в 0,8 — 2 % врядли кто заметит, поэтому можно использовать конденсаторы от 1 мкФ до 4,7 мкФ, правда в эту плату габариты емкостей на 4,7 мкФ уже не будут слишком велики.     Сопротивление R20 может колебаться в гораздо бОльших пределах, поскольку его номинал зависит от потребляемого вентилятором принудительного охлажедения и полученным в конечном итоге выходного напряжения.

    Сомнения в итоговом напряжении не напрасны, поскольку силовой трансформатор высокочастотный и имеет небольшое количество витков, а мотать дробные части витка довольно проблематично. Для примера рассмотрим случай, когда первичная обмотка составляет 17 витков.

Прилагаемое к ней напряжение равно 155 В (после выпрямителя на VD1 получается 310 В, следовательно половина напряжение питания и есть 155 В).

Воспользуемся пропорцией Uперв / Qперв = Uвтор / Qвтор, где Uперв — напряжение на первичной обмотке, Qперв — количество витков первичной обмотки, Uвтор — напряжение вторичной обмотки, Qвтор — количество витков вторичной обмотки и выясним, какие вторичные напряжения мы можем получить:

    155 / 17 = ? / 5, где «?» — выходное напряжение. Если во вторичной обмотке у нас будет 5 витков, то выходное напряжение будет составлять 45 В, если вторичка будет 4 витка, то выходное напряжение трансформатора составит 36 В.     Как видите получить напряжение ровно 40 вольт уже проблематично — нужно мотать 4,4 витка, а реальность показывает, что использовать обмотки не кратные половине витка довольно рискованно — можно намагнитить трансформатор и потерять силовые транзисторы.

    В конечном итоге после монтажа компонентов печатная плата блока питания приобретет следующий вид:

Намотка импульсного трансформатора своими руками

    На плате пока нет диодных мостов, силовых транзисторов, радиатров и моточных деталей, о которых сейчас и поговорим. При изготовлении импульсных блоков питания не стоит забывать о скин эффекте, который проявляется при протекании через проводник высокочастотного сигнала.

Смысл этого эффекта заключается в том, что чем выше частота переменного напряжениея, тем меньше протекает ток через середину проводника, т.е. ток как будто стремится выйти на поверхность. Отсюда и название SKIN -кожа, шкура.

По этому для высокочастотных трансформаторов необходимое от протекающего тока сечение получают методом сложения в жгут нескольких проводников меньшего диаметра, тем самым существенно снижая скин эффект и увеличивая КПД преобразователя.     Самым популярным способом сложения проводников является витой жгут.

Определившись с длиной провода, необходимого для обмотки (одинарным проводм мотают необходимое количество витков и добавляют к полученной длине еще 15-20%) необходмое количество проводов растягиваю на эту длину а затем при помощи дрели и воротка свивают в один жгут:

Намотка импульсного трансформатора своими руками

    Изготовление ленточного жгута более трудоемко — провода растягивают в непосредственной близости другу к другу и склеивают полиуритановым клеем, типа «МОМЕНТ КРИСТАЛЛ». В результате получается гибкая лента, намоитка которой позоволяет добится наибольшей плотности намотки:

Намотка импульсного трансформатора своими руками

    Перед намоткой ферритовое кольцо следует подготовить. Прежде всего необходимо закруглить углы, поскольку они с легкостью повреждают лак на обмоточном проводе:

Намотка импульсного трансформатора своими руками

    Затем необходимо кольцо изолировать, поскольку феррит имеет достаточно низкое сопротивление и в случае повреждения лака на обмоточном проводе может произойти межвиитковое замыкание. В середине, на азднем плане кольцо обмотано обычной бумагой для принтера, справа — бумага пропитана эпоксидным клеем, в середине спереди — наиболее предпочтительный материал — фторопластовая пленка:

Намотка импульсного трансформатора своими руками

    Так же кольца можно обматывать матерчатой изолентой, но она довольно толстая и существенно сокращает размер окна, а это не очень хорошо.

    Используя в качестве сердечника ферритовое кольцо обмотку необходимо равномерно распределить по всему сердечнику, что довольно существенно увеличивает магнитную связь обмоток и уменьшает создаваемые импульсным трансформатором электро-магнитные помехи:

Намотка импульсного трансформатора своими руками

    Осталось выяснить каким именно проводом нужно мотать, точнее какое должно быть сечение. В обычном трансформаторе напряженность в проводнике не должна превышать 2-2,5 Ампера на 1 квадратный милиметр сечения. Если середечник тороидальный, то это значение можно увеличить до трех ампер.

Импульные трансформаторы гораздо меньше своих пятидесяти Герцовых собратьев, у них лучше охлаждение, поэтому напряженность можно увеличить до 4-5 Ампер на квадратный милиметр сечения.

Однако данный совет актуален, и то весьма условно, для стабилизированных импульсных блоков питания, поскольку в не стабилизированном варианте уже начнет сказываться падение напряжения на обмотке под нагрузкой.

    Исходя из выше сказанного можно сделать вывод, что оптимальным вариантом напряженности получается 3-4 Ампера на 1 мм кв — и греется не сильно и падение на нем не слишком большое.     Для тех, кто запамятовал напоминалка:

    Площадь круга равна произведению числа Пи на квардрат радиуса, т.е. S = п • R • R. Для примера расчитаем какое нужно сечение при протекании тока через проводник величиной 7 А.

    В наличии имеется обмоточный провод диаметром 0,8 мм, 0,5 мм и 0,35 мм. Частота преобразования равна 70 кГц.

    В таблице смотрим, какой провод лучше использовать для данной частоты:

ЧАСТОТА ПРЕОБРАЗОВАНИЯ МАКСИМАЛЬНЫЙ ДИАМЕТР ОДНОГО ПРОВОДА ДЛЯ СБОРКИ ЖГУТА
40 кГц 0,65 мм
50 кГц 0,6 мм
60 кГц 0,55 мм
70 кГц 0,5 мм
80 кГц 0,45 мм
90 кГц 0,4 мм

    Согласно таблицы провод диаметром 0,8 мм отпадает, а вот 0,5 мм и 0,35 мм можно использовать. Сечение для первого провода получаем 0,2 мм кв, для второго 0,01 мм кв, следовательно через первый провод можно пропускать 0,6…0,8 А, а через второй 0,3…

0,4 А (умножаем площадь на выбранную напряженость).     Для выяснения количества проводов делим предполагаемый ток нагрузки в 7 А на максимальный ток одного провода и получаем 7 / 0,6…0,8 = 9…12 проводов диаметром 0,5 мм и 7 / 0,3…

0,4

Источник: http://soundbarrel.ru/pitanie/IR2153_03.html

Ссылка на основную публикацию
Adblock
detector