Лабораторный блок питания 12 вольт своими руками

Лабораторный блок питания 12 вольт своими руками

Собирая лабораторный блок питания своими руками, многие сталкиваются с проблемой выбора схемы. Импульсные блоки питания при наладке самодельных передатчиков или приемников могут давать нежелательные помехи в эфир, а линейные блоки питания зачастую не в силах развивать большую мощность. Почти универсальным блоком может стать простой линейный блок питания 1,3 – 30В и током 0 – 5А, который будет работать в режиме стабилизации тока и напряжения. При желании им можно будет, как зарядить аккумулятор, так и запитать чувствительную схему.

В сети гуляет интересная схема, которая обсуждалась на множестве форумов, отзывы по ней были ну совсем неоднозначные. Ниже приводим оригинал этой схемы, и вкратце расскажем, откуда она взята. На основе ее мы сделаем лабораторный блок питания своими руками.

Лабораторный блок питания 12 вольт своими руками

Это почти классика. Блок питания реализован на стабилизаторе напряжения LM317, который может регулировать напряжение в пределах 1,3 – 37В.

Работая в паре с мощным транзистором КТ818, схема способна протянуть через себя уже значительный ток.

Ограничитель и стабилизатор тока, так называемая защита лабораторного блока питания, организована на LM301.

Если обратиться к первоисточникам, можно увидеть, что основа схемы описывалась в разных книгах, например Г. Шрайбер «300 схем источников питания» стр. 39.

Лабораторный блок питания 12 вольт своими руками

А также упоминалась в книге П. Хоровиц «Искусство схемотехники» том 1, стр. 358.

Лабораторный блок питания 12 вольт своими руками

Новичкам, собирающий первый блок питания, рекомендуем ознакомиться с вышеупомянутой литературой, там есть, что для себя почерпнуть.

Как видим, основа особо не поменялась, схема обросла парой фильтрующих конденсаторов, диодными мостами и весьма странным способом включения измерительной головки. Также применяется транзистор КТ818, который значительно уступает по мощности MJ4502 или MJ2955.

Немножко подумав, мы сделали свою интерпретацию данного блока питания. Повысили емкость входных конденсаторов, убрали элементы измерительной головки и добавили парочку защитных диодов.

Применения в этой схеме КТ818 было абсолютно неоправданно, он безбожно грелся и безвозвратно издох, пока его не заменили парой недорогих транзисторов TIP36C, которые включили параллельно.

Лабораторный блок питания 12 вольт своими руками

Настройку блока питания необходимо проводить в несколько этапов:

Первое включение производится без LM301 и транзисторов. Регулятором Р3 проверяем, как регулируется напряжение. За регулировку напряжения отвечают LM317, Р3, R4 и R6, С9.

Если регулировка напряжения производиться нормально, тогда к схеме подключаем транзисторы. Пару транзисторов покупать лучше с одной партии, с максимально близким hFE. Для нормальной работы параллельно включенных транзисторов, в цепи эмиттера должны находиться балансировочные резисторы R7 и R8.

Номинал R7 и R8 необходимо подбирать, сопротивление должно быть максимально низким, но достаточным, что бы ток проходящий через Т1 был равен току проходящим через Т2.

На данном этапе к выходу БП можно подключать нагрузку, но ни в коем случае не стоит устраивать КЗ – транзисторы моментально выйдут из строя, забрав с собой и LM317.

Следующим этапом станет установка LM301. Важно убедиться, что на 4-й ножке операционного усилителя присутствует -6 В.

Если там +6 В, то необходимо внимательно осмотреть, как у Вас включен диодный мост BR2 и правильно ли подключен конденсатор С2.

Питание LM301 (7я ножка) МОЖНО брать с выхода БП.

Вся дальнейшая настройка сводиться к подгону Р1 под максимальный рабочий ток блока питания. Как видим, настроить лабораторный блок питания своими руками будет совсем не трудно, главное не допустить ошибки при монтаже.

Используемые нами основные компоненты:

  • Трансформатор ТПП 306-127/220-50. Позволяет выжать с каждой 20 вольтовой обмотки по 2,56 А, включив их параллельно получим 5,12 А. Остальные обмотки идут на питание операционного усилителя, вентилятора и цифрового вольтамперметра;
  • Стабилизатор — LM317К;
  • Транзисторы — TIP36C;
  • Операционный усилитель — LM301AN;
  • Конденсаторы электролитические – номинал см. схему, максимальным напряжением до 50В;
  • Диоды BR2 – 1N1007;
  • Диоды BR1 — MBR20100CT;
  • Резисторы R1 – 33 Ом, 2Вт;
  • Резисторы R5, R7, R8 – 0,1 Ом, 5Вт;
  • Остальные резисторы мощностью — 0,25Вт;
  • Резисторы Р1 – многооборотный подстроечный 470 кОм;
  • Предохранитель F2 – самовосстанавливающейся предохранитель от Littelfuse на 7А/30В.

Лабораторный блок питания 30в 5а, результат

  • Плата управления собранная на макетке.
  • Лабораторный блок питания 12 вольт своими руками
  • Плата основного диодного моста.
  • Лабораторный блок питания 12 вольт своими руками
  • Транзисторы установлены на радиатор от Cooler Master CMDK8, этот боксовый куллер способен рассеивать мощность до 95 Вт.
  • Лабораторный блок питания 12 вольт своими руками
  • Внутри блока расположен 80мм дополнительный вентилятор, охлаждающий диодный мост и трансформатор, а также обдувающий радиатор транзисторов с тыльной стороны.
  • Лабораторный блок питания 12 вольт своими руками
  • Лабораторный блок питания 12 вольт своими руками

Все это добро засунуто в добротный радиолюбительский корпус, оставшийся со времен СССР. Вот таким вышел у нас лабораторный блок питания своими руками.

  1. Подключение цифрового вольтамперметра избавило нас от измерительных стрелочных приборов.

Демонстрация работы:

В работе с максимальным током в 5 А транзисторы остаются теплыми благодаря хорошей системе охлаждения, температура основного диодного моста также в норме, т.к. там используются мощные диоды Шоттки и вентилятор, который охлаждает этот мост и трансформатор. При полной нагрузке все таки происходит небольшой нагрев трансформатора. Вес блока составил порядка 4 кг.

Уже изготовив данный блок, пришла идея, как можно немного переделать схему и получить этот лабораторный блок питания с нуля вольт. Но это уже будет другая история…

Работы наших читателей

Ниже будем добавлять работы наших читателей, присылайте в комментах фото своих лабораторных блоков питания собранные по этой схеме, будем добавлять в статью, так станет интересней.

  1. Лабораторный блок питания своими руками прислал Алексей. Это его первая электронная подделка, пока не оформлен в корпус. Трансформатор: ТПП-312. Транзисторы: пара TIP36C. На выходе: ток до 7А.
  2. Лабораторный блок питания собрал своими руками Виктор. Трансформатор: взял с бесперебойника. Транзисторы: пара TIP36C. На выходе: ток до 5А.
  3. Корпус подошел от распределительной коробки, размер лабораторного БП 24х19х9,5 см, вес 4,5 кг. По затратам на все ушло около 900 рублей.

    Лабораторный блок питания выдает напряжение 1.3… 25 вольт, максимальное честное напряжение 19,5 при нагрузке 5 ампер, это почти, то напряжение, которое выдает трансформатор до диодного моста и конденсаторов.

  4. Самодельный лабораторный блок питания от Валерия. Трансформатор: ТПП-307: пара TIP36C. На выходе: ток до 3,6А. Из за проблем с трансформатором, выжать больше не получилось.
  5. Еще один лабораторный блок питания от Алексея. Трансформатор: ТПП-312: Силовые транзисторы пара TIP36C. На выходе: ток до 5,5А. Из за небольшой ошибки в трассировке дорожек этот БП занял у Алексея очень много времени и сил.
  6. Свой лабораторный блок питания, который собран по нашей схеме, прислал нам Сергей. Транзисторы: пара TIP36C. Трансформатор: перемотанный трансформатор от UPS. Отдельно хотелось отметить, что такой трансформатор без перемотки не хотел корректно работать в БП. Дополнительно Сергей модифицировал свой блок питания, а именно оснастив его системой автоматической регулировки оборотов вентилятора, снятой со старого компьютерного блока питания. Стоимость блока получилась примерно в 2700 руб.
  7. Этот лабораторный блок питания мы получили от Александра. Во время сборки Александр не однократно сталкивался с различными проблемами, не смог подружить пару транзисторов и не сразу разобрался с питанием LM301. Но благополучно их решил и не стал опускать руки. Транзисторы: пара TIP36C. Трансформатор: ТПП 322. На выходе 30В и 5А.
  8. Такой блок мы получили от Андрея. Выдает 19,5-20 В и 5 А. Порог установлен на 4,5 А. Хотя однако трансформатор может намного больше (32 В; 6 А). Добавлены последовательно к переменным резисторам еще по одному, номиналом 10% от базового. Транзисторы: пара TIP36C. Трансформатор: тороидальный от радиолы.

Источник: http://diodnik.com/laboratornyj-blok-pitaniya-svoimi-rukami-13-30v-0-5a/

Регулируемый блок питания своими руками

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела.

Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю.

В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Блок питания из старой платы компьютера

Stalevik

Мастера покупают изобретения в лучшем китайском интернет-магазине.

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.

Лабораторный блок питания 12 вольт своими руками

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания.

Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель.

Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Электроника для самодельщиков в китайском магазине.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Лабораторный блок питания 12 вольт своими руками

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.

Лабораторный блок питания 12 вольт своими руками
Лабораторный блок питания 12 вольт своими руками

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.

Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.

Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.

На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Лабораторный блок питания 12 вольт своими руками

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт.

То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый.

Читайте также:  Тарельчатый шлифовальный станок - своими руками

Нужно знать только 2 резистора – они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом.

Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине.

Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Лабораторный блок питания 12 вольт своими руками

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи.

Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания.

Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.

Лабораторный блок питания 12 вольт своими руками
Лабораторный блок питания 12 вольт своими руками
Лабораторный блок питания 12 вольт своими руками

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.

Лабораторный блок питания 12 вольт своими руками

Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт.

Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить.

Подсоединим и видим на выходе 7 вольт.

У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.

Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус.

Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается.

Внутри видим блок питания.

Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.

Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.

Как сделать регулировку?

Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть.

От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать.

Берём паяльник, фен. Выпаял транзистор и резистор.

Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор.

Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной.

То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.

Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.

Видео канала “Технарь”.

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков.

Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи.

Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.

Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания.

На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт.

Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Скачать схему с платой.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.

Приступаем к сборке

    Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

    Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

    Видео Radioblogful. Видеоблог паяльщика.

    Источник: https://izobreteniya.net/reguliruemyiy-blok-pitaniya/

    Самодельный блок питания на 12 вольт: подбор компонентов и простые схемы для создания своими руками. 130 фото самодельных универсальных блоков

    Блок питания достаточно прост в изготовлении, если немножко разобраться с теоретической частью и понять, как он работает. Все не так сложно, как кажется. Из чего состоит блок питания на 12 вольт, с фото и примерами, а также описание его элементов и принцип работы – далее в статье.

    Лабораторный блок питания 12 вольт своими руками

    Основные элементы и принцип действия блоков питания

    Главной частью является понижающий трансформатор, причем при отсутствии его с необходимыми параметрами, то вторичная обмотка перематывается вручную и получается необходимое выходное напряжение. Посредством трансформатора происходит уменьшение напряжения сети 220 вольт до 12, идущих дальше к потребителю.

    • Лабораторный блок питания 12 вольт своими руками
    • Принципиальной разницы между штатными устройствами и с перемотанной вторичной обмоткой нет, главное – правильно рассчитать сечение провода и количество его витков на обмотке.
    • Лабораторный блок питания 12 вольт своими руками

    Далее ток идет на выпрямитель. Состоит из полупроводников, например, диодов. Диодный мост, в разных схемах, может состоять из одного, двух или четырех диодов. После выпрямителя ток поступает на конденсатор, также в схеме для выдачи стабильного напряжения желательно включение стабилитрона с соответствующими характеристиками.

    Лабораторный блок питания 12 вольт своими руками

    Трансформатор

    Состоит трансформатор из сердечника, изготовленного из ферромагнетика, а также первичной и вторичной обмоток. На первичную обмотку приходит 220 вольт, а со вторичной, в данном случае, снимается 12, идущие на выпрямитель. Сердечники в данном типе блоков питания по большей части изготавливают Ш-образной и U-образной формы.

    Лабораторный блок питания 12 вольт своими руками

    Расположение обмоток допускается как одна на другой на общей катушке, так и по отдельности. К примеру, у U-образного сердечника пара катушек, на каждую из которых намотано по половине обмоток. Выводы при подсоединении трансформатора подключают последовательно.

    Лабораторный блок питания 12 вольт своими рукамиЛабораторный блок питания 12 вольт своими рукамиЛабораторный блок питания 12 вольт своими рукамиЛабораторный блок питания 12 вольт своими рукамиЛабораторный блок питания 12 вольт своими руками

    Как правильно рассчитать число витков

    При перемотке вторичной катушки, нужно знать, какому напряжению соответствует виток. Если перематывать первичную обмотку не планируется, нет нужды рассчитывать ни сечение провода, ни его свойства. Проблема с первичной обмоткой заключается в большом количестве витков тонкой проволоки, из которой он состоит.

    Для расчета вторичной обмотки, делают 10 витков и подключают трансформатор в сеть. Измеряют напряжение на выводах, после чего делят его на 10, после чего 12 делится на полученное число.  Результат и будет необходимым количеством витков, причем рекомендуется увеличить его на 10% для компенсации падения напряжения.

    Читайте также:  Делаем автомобильный обогреватель своими руками

    Диоды

    Выбор диодов определяется силой тока на вторичной обмотке. Для данных целей подойдут кремниевые полупроводники, только не высокочастотные, поскольку те предназначены для выполнения других задач.

    Для того чтобы устройство получилось компактным, хорошим решением будет применение диодных сборок из четырех элементов. На два вывода подается питание с трансформатора, с двух других снимают выпрямленный ток.

    После диодного моста настоятельно рекомендуется в схеме предусмотреть стабилитрон с подходящими параметрами, поскольку в течение дня далеко не факт, что входное напряжение будет стабильно 220 вольт. Если подать на первичную обмотку большее напряжение, то выходное тоже будет больше чем 12 вольт.

    Корпус

    Корпус для блока питания очень удобно делать из алюминия. Сперва собирается каркас из уголков, который затем обшивают алюминиевыми пластинками. Плюсов такого решения как минимум два – во-первых, с алюминием легко работать, во-вторых, он очень хорошо проводит тепло, что предохранит блок питания от перегрева.

    Если нет желания собирать каркас самостоятельно, можно позаимствовать его от старой микроволновки. Определенные плюсы у такого решения есть – малый вес, эстетичный вид и вместительность.

    Печатная плата для блока питания

    Изготавливается из фольгированного текстолита, для чего производят обработку металла соляной кислотой либо аккумуляторным электролитом.

    Работы проводятся в резиновых перчатках с соблюдением мер предосторожности. Металл промывают содовым раствором и наносят изображение печатной платы. Существуют специальные компьютерные программы для создания таких изображений.

    1. Протравливают плату, опуская ее в раствор хлорного железа, либо смеси медного купороса с солью.

    Монтаж элементов

    По окончании протравливания, плату ополаскивают, снимают с дорожек защиту и обезжиривают. Очень тонким сверлом сверлятся отверстия в плате под элементы. Затем элементы вставляют в отверстия и подпаивают к дорожкам, после чего дорожки лудят с помощью олова.

    Фото самодельного блока питания на 12 вольт

    Вам понравилась статья? Поделитесь 😉  

    Источник: https://electrikexpert.ru/samodelnyj-blok-pitaniya-na-12-volt/

    Cамодельный блок питания на 12 вольт

    Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

    • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
    • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
    • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

    Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

    Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

    Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

    Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

    Компоновка прибора

    Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено.

    При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера.

    Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.

    Лабораторный блок питания 12 вольт своими рукамиКорпус блока питания
    Лабораторный блок питания 12 вольт своими рукамиКорпус блока питания

    На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.

    Лабораторный блок питания 12 вольт своими рукамиНизковольтная обмотка
    Лабораторный блок питания 12 вольт своими рукамиМонтажная плата

    Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

    Диодный мост

    Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс.

    Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус.

    Или их можно назвать полюсами – верхним и нижним.

    Лабораторный блок питания 12 вольт своими рукамиСхема диодного моста

    Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

    Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

    Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

    Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

    Проблемы простого блока питания с нагрузкой

    Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

    Лабораторный блок питания 12 вольт своими руками

    Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

    1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
    2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
    3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

    Блок питания со стабилизатором на микросхеме

    На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.

    Лабораторный блок питания 12 вольт своими рукамиБлок питания со стабилизатором на микросхеме

    Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

    Блок питания повышенной мощности

    Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

    Лабораторный блок питания 12 вольт своими рукамиТранзисторы Дарлингтона типа TIP2955

    Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

    На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

    Лабораторный блок питания 12 вольт своими рукамиПодключение одного составного транзистора Дарлингтона

    Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути.

    В этом случае сложно придумать такой мощный блок питания, который способен это выдержать.

    Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

    Источник: https://LampaGid.ru/elektrika/komponenty/blok-pitaniya-12v

    Лучший самодельный блок питания

    Доброго времени суток форумчане и гости сайта Радиосхемы! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, перебрал десятки вариантов.

    В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость.

    Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

    Лабораторный блок питания 12 вольт своими руками

    Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А — минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом — ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться.

    Читайте также:  Доступная самоделка из семи брусков. нужные столярные тиски своими руками

    Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4.

     Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие — раньше ограничить ток.

    Лабораторный блок питания 12 вольт своими руками

    Рекомендуем такой вариант схемы с мультисима. Добавлен резистор (R9 100 Ом) в базу Т5 (Q5) для ограничения тока при крайнем левом положении резистора R8 (470 Ом). Регулирует от 10 мА до максимума.

    Лабораторный блок питания 12 вольт своими руками

    На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

    • 1-выход 0-22в
    • 2-выход 0-22в
    • 3-выход +/- 16в

    Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге — смотрите далее:

    Лабораторный блок питания 12 вольт своими руками Лабораторный блок питания 12 вольт своими руками Лабораторный блок питания 12 вольт своими руками

    Отдельная благодарность за улучшение схемы — Rentern. Сборка, корпус, испытания — aledim.

       Форум по БП

       Обсудить статью Лучший самодельный блок питания

    Источник: https://radioskot.ru/publ/luchshij_samodelnyj_blok_pitanija/1-1-0-1136

    Простой БП своими руками

    Вот и собрано очередное устройство, теперь встаёт вопрос от чего его питать? Батарейки? Аккумуляторы? Нет! Блок питания, о нём и пойдёт речь.

    Лабораторный блок питания 12 вольт своими руками

    Схема его очень проста и надёжна, она имеет защиту от КЗ, плавную регулировку выходного напряжения.
    На диодном мосте и конденсаторе C2 собран выпрямитель, цепь C1 VD1 R3 стабилизатор опорного напряжения, цепь R4 VT1 VT2 усилитель тока для силового транзистора VT3, защита собрана на транзисторе VT4 и R2, резистором R1 выполняется регулировка.

    Трансформатор я брал из старого зарядного от шуруповерта , на выходе я получил 16В 2А
    Что касается диодного моста (минимум на 3 ампера),  брал его из старого блока ATX также как и электролиты, стабилитрон,  резисторы.

    Стабилитрон использовал на 13В, но подойдёт и советский Д814Д.
    Транзисторы были взяты из старого советского телевизора, транзисторы VT2, VT3 можно заменить на один составной например КТ827.

    Резистор R2 проволочный  мощностью 7 Ватт и R1 (переменный) я брал нихромовый, для регулировки без скачков, но в его отсутствии можно поставить обычный.

    Лабораторный блок питания 12 вольт своими руками

    Состоит из двух частей:  на первой собран стабилизатор и защита и, а на второй силовая часть.

    Все детали монтируются на основной плате (кроме силовых транзисторов), на вторую плату  припаяны  транзисторы VT2, VT3 их крепим на радиатор с использованием термопасты, корпуса (коллекторы) изолировать ненужно .

    Схема повторялась много раз в настройке не нуждается. Фотографии двух блоков приведены ниже С большим радиатором 2А и маленьким 0,6А.

    Лабораторный блок питания 12 вольт своими руками

    Индикация
    Вольтметр: для него нам нужен резистор на 10к и переменный  на  4,7к и индикатор я брал м68501 но можно и другой. Из резисторов соберём делитель резистор на 10к не даст головке сгореть, а резистором на 4,7к выставим максимальное отклонение стрелки.

    После того как делитель собран и индикация работает нужно от градуировать его , для этого вскрываем индикатор и наклеиваем на старую шкалу чистую бумагу и вырезаем по контуру, удобнее всего обрезать бумагу лезвием.

    Лабораторный блок питания 12 вольт своими руками

    Когда все приклеено и высохло, подключаем мультиметр параллельно нашему индикатору, и всё это  к блоку питания, отмечаем 0 и увеличиваем напряжение до вольта отмечаем и т.д.

    Амперметр: для него берём резистор на 0,27 ома !!! и переменный на 50к, схема подключения  ниже, резистором на 50к выставим максимальное отклонение стрелки.

    Градуировка такая-же только изменяется подключение см ниже в качестве нагрузки идеально подходит галогеновая лампочка на 12 в.

    Скачать список элементов (PDF)

    Прикрепленные файлы:

    Источник: https://cxem.net/pitanie/5-225.php

    Мини лабораторный блок питания 24 В, 6 А (12 А в КЗ) своими руками — Сообщество «Электронные Поделки» на DRIVE2

    Всем привет!

    Хочу поделиться с вами тем, как я собрал себе мини лабораторный (читай регулируемый) блок питания на 24 В, 6 А (12 А в КЗ). Идея и схема не являются продуктом моей интеллектуальной деятельности, я просто их повторил.

    Необходимость в таком блоке питания возникла уже давно, с ним легко диагностировать неисправности при ремонте различной электронной аппаратуры и он имеет небольшие габаритные размеры, что позволяет сэкономить и без того небольшое рабочее пространство домашнего мастера-ломастера.

    Итак, схема устройства представлена ниже. Сразу приведу ссылку на видео-инструкцию, которой пользовался я.

    Далее заказал я дождался с али всех необходимых компонентов. Откопал в закромах старый DVD-ROM, выпотрошил его и подготовил его корпус и ещё две 5″ заглушки от системника (одного цвета не нашлось). В итоге вот так выглядит стартовый набор для сборки.

    Затем я срезал ножницами по металлу выступающие части корпуса спереди и сзади, и прикрутил заглушки на винтики М3, которые очень часто встречаются системных блоках.

    Внутреннюю поверхность корпуса пришлось немного подрихтовать молотком, так как на ней были выступающие части, которые значительно сокращали высоту монтажа.

    Так как корпус металлический, необходимо было принять меры по изоляции верхней и нижней стенки корпуса. Для этого я ничего лучше придумать не смог, чем взять один лист прозрачной плёнки, которую я использую для печати фотошаблонов. Приклеил её в нескольких местах на двухсторонний скотч.

    Далее прикинул расположение компонентов и просверлил отверстия под стойки. Для монтажа платы БП пришлось использовать самодельные стойки-втулки, сделанные из кусочков от пластикового дюбеля. Так как при использовании готовых металлических стоек, даже минимальной высоты, радиаторы БП упирались в верхнюю стенку корпуса.

    Вентиляционные отверстия в корпусе предусмотрел с обоих боков. Насверлил и снял фаску сверлом большего диаметра.

    Затем дремелем вырезал отверстия под дисплей, под разъем питания с задней стороны, а так же высверлил отверстия под остальную периферию на передней стенке.

    Чтобы удобно можно было регулировать напряжение и ток, необходимо заменить подстроечные резисторы на плате понижающего преобразователя на переменные резисторы на 10 кОм, и подвести провода к плате.

    Затем спаял всю проводку внутри корпуса согласно схеме. Так же необходимо замкнуть между собой контакты DATA+ и DATA-, иначе телефоны будут думать, что подключены к системному блоку компьютера и значительно ограничат ток зарядки.

    Как можно наблюдать на фото, я временно открутил переднюю и заднюю панели от корпуса, так как в отличии от предложенного на видео способа монтажа, прикрепил их не к нижней части корпуса, а к верхней, это удобнее с точки зрения их монтажа, но доставляет определённые неудобства при финальной сборке.

    При первом включении подключать дисплей не следует. Так как он питается от меньшего понижающего преобразователя напряжения, который будет подключен к USB порту и на нем сначала нужно выставить ровно 5 В (это значение не будет зависеть в дальнейшем от вращения ручек регулировки).

    Далее собрал всю оставшуюся проводку и проверил показания вольтметра и амперметра. Оказалось их нужно немного настроить. Для этого на плате с дисплеем имеется два маленьких подстроечных резистора. Подключив мультиметр, привел показания более-менее к соответствию.

    Лабораторный блок питания 12 вольт своими руками

    Полный размер

    Это настройка вольтметра. Амперметр подстраивается аналогично.

    • Далее для эстетичности как смог, зафиксировал проводку стяжками.
    • Чтобы ЛБП не катался по столу на торчащих головках от болтов, приклеил резиновые ножки.

    Далее тестируем работу, для начала решил проверить питание от USB портов, подключил телефон. Как видим телефон у меня в режиме зарядки потребляет 350 мА.

    Почему так мало? Потому что я закрутился и забыл замкнуть между собой контакты DATA+ и DATA- USB разъёма))) нужно будет устранить этот косячек. А так же показания 5 В это совпадение.

    На самом деле неважно какое напряжение будет выставлено на вольтметре, на USB портах всегда будет 5 В, так как это напряжение задается подстроечным резистором на самой плате step-down преобразователя и не зависит от положения ручек регулировки.

    Так же у меня недавно сгорела зарядка от моей бритвы, решил проверить питание от основных клемм на ней. Выставил 15 В, как видим бритва при зарядке берет ток всего 190 мА.

    И вот финальный вид готового мини ЛБП.

    И теперь главный вопрос, а сколько же стоили комплектующие для сборки? Вот вам подробная смета, первые три детали куплены в Китае, остальные в местном радиомагазине:

    1. Блок питания 24 В, 6 А — 667 р;2. Понижающий, регулируемый преобразователь — 293 р;3. Вольтметр — 192 р;4. Step-down преобразователь 3А — 35 р;5. Штекер питания AC — 20 р;6. Гнезда «бананы» — 2х15 р — 30 р;7. Штекеры «бананы» — 2х15 р — 30 р;8.

    USB порт, двойной — 25 р;9. Стойки М3 — 6х6 р — 36 р;10. Кнопка включения — 20 р;11. Гайки М3 — 6х3 — 18 р;12. Переменные резисторы — 2х25 — 50 р;13. Ручки для резисторов — 2х11 р — 22 р;14. Корпус от DVD привода — бесплатно. Но БУ можно купить за 100 р.

    ИТОГО: 1438 рубля.

    Для любителей сравнивать, в местных магазинах ЛБП стоят от 2500 р. Сборка заняла у меня один выходной день и два вечера после работы.

    Про нагрев: радиаторы начинают греться только при продолжительной работе на нагрузке, близкой к максимальной. Я не планирую использовать этот БП на предельных режимах, но если всё же будет такая необходимость, всегда можно добавить вентилятор.

    Всем спасибо за внимание!

    Источник: https://www.drive2.ru/c/496226366241374868/

    Ссылка на основную публикацию
    Adblock
    detector