Как сделать простой эми излучатель своими руками!

Импульсный излучатель

     В последнее  время развелось много злых бродячих собак, да и других опасных животных. Как защитить себя от них? Кто-то советует электрошокер, — будем ждать пока собака подбежит на расстояние вытянутой руки? Кто-то ультразвуковой отпугиватель, — но если она глухая? А за ствол, можно вообще сесть. Выход один — ФОТОННЫЙ Импульсный излучатель. 

     Все мы иногда фотографируемся и знаем, как неприятно смотреть на срабатывающую вспышку. Причём надо ещё и глаза держать открытыми. А ведь свет бьёт не только в глаза, а рассеивается равномерно по помещению.

Теперь представьте что будет, если эта сотня джоуль импульсного излучателя сфокусируется оптической линзой в узкий луч наподобии того, как это делается в DVD-лазере, и в виде мощнейшего импульса шарахнет по глазам объекта нападения!

     Принцип действия импульсного излучателя, заключается в фокусировки фотовспышки, линзой диаметром около 50мм с 10-кратным увеличением до тонкого луча. Саму вспышку, с питанием от батареек, можно собрать по любой известной схеме, например такой:

Как сделать простой ЭМИ излучатель своими руками!

     Описание работы схемы импульсного излучателя: Интегральная схема типа LM386 представляет собой усилитель звуковой частоты. ИС включена по схеме мультивибратора, генерирующего импульсы частотой около 30 кГц, определяемой номиналами R3 и С1. На выходе (вывод 5) при этом формируются импульсы прямоугольной формы, которые через конденсатор С2 поступают на трансформатор ТТ.

     Трансформатор Т1- сетевой понижающий трансформатор на 6-12В. Его низковольтная обмотка используется в схеме в качестве первичной.

Размах выходного напряжения на вторичной обмотке при этом равен приблизительно 400 В, что после выпрямления выпрямителем D1, СЗ, С4 обеспечивает на его выходе постоянное напряжение 300 В.

После выключения схемы, прежде чем браться руками за конденсаторы СЗ, С4, С5, их предварительно следует разрядить. Постоянное напряжение, поджигающее импульсную лампу ИФК-120, подается через резистор R4 на конденсатор С5.

     Высокое напряжение поджига, необходимое для импульсной лампы, формируется катушкой Т2, подключенной к аноду. При подключении энергия, накопленная заряженными до 300 В конденсаторами СЗ и С4, обеспечивает яркую вспышку импульсной лампы FT.

     Цепь управления поджигом состоит из элементов С4, С5, D2 R5, SW1 и Т2. При открывании тиристора D2 управляющее напряжение поступает на катушку Т2. Непосредственное подключение конденсатора С5 к катушке с помощью механического ключа привело бы к быстрому прогоранию

     Детали: IC1 — усилитель LM386; D1-1N4004; D2-тиристор С106В1 или любой другой; T1- малогабаритный трансформатор 220В/10В; T2-пусковой дроссель (стандартный, от любой советской вспыхи — фил, луч, и т. д.); FT -лампа-вспышка ИФК-120, Е2-486 (или аналогичные); С1-0,003 мкФ; С2-300 мкФ. 15 В; СЗ, С4-470 мкФ, 400 В; С5 — 0,47 мкФ, 400 В; R1 1 кОм; R2-10kOm; R3- 22 кОм; R4 220 кОм; R5-47 кОм.

     Как вариант, можно взять и такие схемы импульсного излучателя с батареечным питанием:

Как сделать простой ЭМИ излучатель своими руками! Как сделать простой ЭМИ излучатель своими руками!

     Лампу для импульсного излучателя берём дешёвую советскую ИФК-120 с небольшой доработкой. Поверх колбы наматываем провод для лучшего срабатывания.

Как сделать простой ЭМИ излучатель своими руками!

     Настраивать фокусное расстояние линзы можно с помощью простого стробоскопа:

Как сделать простой ЭМИ излучатель своими руками!

     Саму линзу берём от увеличительной десятикратной лупы. Подключаем ИФК-120 к схеме стробоскопа и приближая — удаляя линзу добиваемся фокусировки вспыха светового пятна на стене. Далее закрепляем всё в корпусе от какой-нибудь нерабочей вспышки и импульсный излучатель готов.

Как сделать простой ЭМИ излучатель своими руками!              Как сделать простой ЭМИ излучатель своими руками!

     Если есть лишняя сотня баксов — можно ничего не паять, а купить готовую батареечную фотовспышку и просто добавить фокусирующую оптику со светодиодом.

Как сделать простой ЭМИ излучатель своими руками!

     Спереди корпуса импульсного излучателя, возле линзы обязательно закрепите мигающий красный светодиод — он привлечёт взгляд в это место для лучшего эффекта. Сделать работу с излучателем ещё более удобной можно установив сверху корпуса лазерную указку (типа прицел), чтоб видеть — куда пойдёт максимум луча.

     Не забывайте ставить оценку сайту и оставлять комментарии! Наш ФОРУМ.

   Схемы для начинающих

Источник: https://elwo.ru/publ/fotonnyj_izluchatel_quotbleskquot/1-1-0-77

Защита электроники от электромагнитного импульса

Как сделать простой ЭМИ излучатель своими руками!
Как сделать простой ЭМИ излучатель своими руками!

Мощный электромагнитный импульс (ЭМИ) появляется вследствие всплеска энергии, которая излучается или проводится таким источником как солнце или взрывное устройство. Если в вашем арсенале выживальщика присутствуют электротехнические или электронные устройства, необходимо предусмотреть их защиту от ЭМИ, чтобы они смогли продолжать работать после начала боевых действий, природной или техногенной катастрофы.

Что такое электромагнитный импульс

Всякий раз, когда электрический ток проходит через провода, он производит электрическое и магнитное поля, которые исходят перпендикулярно движению тока.

Размер этих полей пропорционален силе тока. Длина провода напрямую влияет на силу тока индуцированного электромагнитного импульса.

Кроме того, даже обычное включение питания производит короткий всплеск электрической и магнитной энергии.

При этом всплеск настолько мал, что едва заметен. Например, коммутационные действия в электрической схеме, двигателях и системах зажигания для газовых двигателей так же производят к небольшим ЭМИ импульсам, которые могут вызвать помехи на соседнем радио или телевидении. Для их поглощения используются фильтры, удаляющие незначительные всплески энергии и помехи от них.

Большой выброс энергии производится, когда некий заряд электричества быстро разряжается. Данный электростатический разряд (ESD) может шокировать человека или вызвать опасные искры вокруг паров топлива. Так же многие помнят, что в детстве мы бы протирали ноги об ковер, а затем касались друзей, создавая разряд ESD. Это тоже одна из форм ESD.

Чем сильнее энергия импульса, тем больше он может повредить здания и воздействовать людей. Например, молния является мощной формой ЭМИ.

Электростатический разряд от молнии может быть очень опасным и стать причиной катастрофы. К счастью, большинство молнии замкнуто на землю, где электрический заряд поглощается.

Громоотвод изобрел Бенджамин Франклин, благодаря чему сегодня сохраняются многие здания и сооружения.

Такие события, как ядерные взрывы, высотные неядерные взрывы и солнечные бури могут создать мощный ЭМИ, который наносит ущерб электрическому и электронному оборудованию, расположенному недалеко от источника события. Все это угрожает электросетям и функционированию большинства электрических и электронных устройств в нашей жизни.

Как сделать простой ЭМИ излучатель своими руками!

Поражающие факторы электромагнитного импульса

Опасность ЭМИ заключается в том, что он поражает системы жизнеобеспечения и транспорта. Поэтому, например, при мощном воздействии электромагнитного импульса современная незащищенная автотехника выходит из строя.

Особенно это касается автомобилей, произведенных после 1980 года. Поэтому в случае техногенной катастрофы, начала боевых действий или всплеска солнечной активности оптимально использовать автомашины старого образца.

Кроме того, электромагнитный импульс поражает:

• Компьютеры.
• Дисплеи.
• Принтеры.
• Маршрутизаторы.
• Трансформаторы.
• Генераторы.
• Источники питания.
• Стационарные телефоны.
• Любые электронные схемы.
• Телевизоры.
• Радио, DVD плееры.
• Игровые устройства.
• Медиа центры
• Усилители.

• Системы связи (передатчики, приемники)
• Кабели (передачи данных, телефонные, коаксиальные, USB и т.д.)
• Провода (особенно большой длины).
• Антенны (внешние и внутренние).
• Электрические шнуры питания.
• Системы зажигания (авто и самолетов).
• Электрические схемы СВЧ.

• Кондиционеры.
• Аккумуляторы (все виды).
• Фонарики.
• Реле.
• Системы сигнализации.
• Контроллеры заряда.
• Преобразователи.
• Калькуляторы.
• Электроинструменты.
• Электронные запчасти.
• Зарядные устройства.
• Устройства контроля (CO2, детекторы дыма и т.д.).

• Кардиостимуляторы.
• Слуховые аппараты.

• Устройства медицинского мониторинга и т.п.

Факторы, которые определяют урон от ЭМИ

• Сила входящего электромагнитного импульса.
• Расстояние до источника импульса.
• Угол линии удара от источника к вашему положению на вращающейся Земле.
• Размер и форма объектов, которые получают и собирают ЭМИ.
• Степень изоляции приборов и устройств от вещей, которые могут собирать и передавать энергию ЭМИ.

• Защита или экранирование приборов и устройств.

Как защититься от ЭМИ: первые действия

С большой долей вероятности небольшие системы не будут затронуты ЭМИ (англ. EMP), если они изолированы от сети питания. Поэтому при поступлении предупреждения о грядущем EMP отключите все подключенные к электрической розетке приборы и устройства.

Не забудьте вентиляцию и термостаты. Отключите солнечные панели и весь дом от общей сети, откройте запорные переключатели между солнечными панелями и инвертором, и между преобразователем и распределительной панелью питания.

При слаженных действиях это займет несколько минут.

Общая защита от электромагнитного излучения

Предлагаемые защитные действия:

• Отключайте электронные устройства, когда они не используется.
• Отключайте электроприборы, когда они не используются.
• Не оставляйте компоненты, такие как принтеры и сканеры, в режиме ожидания.
• Используйте короткие кабели для работы.
• Установите защитную индукцию вокруг компонентов.
• Используйте компоненты с автономными батареями.

• Используйте рамочные антенны.
• Подключите все провода заземления к одной общей точке заземления.
• По возможности используйте небольшие устройства, которые менее чувствительны к ЭМИ.
• Установите MOV (металл-оксид-варистор) переходные протекторы на портативные генераторы.
• Используйте ИБП для защиты электроники от всплеска EMP.

• Используйте блокирования устройства.
• Используйте гибридную защиту (например, полосовой фильтр с последующим молниеотводом).
• Держите чувствительные приборы и устройства подальше от длинных трасс кабеля или электропроводки, антенн, растяжек, металлических башен, гофрированного металла, стальных ограждений, железнодорожных путей.

• Устанавливайте кабель под землей, в экранированных кабельных каналах.

• Постройте одну или несколько клеток Фарадея.

Следует заранее продумать защитную систему. Например, резервный генератор, вероятно, не будет поврежден солнечной бурей, но ЭМИ может повредить чувствительные электронные контроллеры, так что экранирование является целесообразным.

И наоборот, такой прибор, как источник бесперебойного питания (ИБП) может быть полезным сам по себе в качестве компонента защиты.

Если EMP происходит, резкий рост может уничтожить ИБП, но это, скорее всего, защитит от разрушения подключенные устройства и компоненты.

Как построить клетку Фарадея

Клетку Фарадея можно смастерить в домашних условиях из металлических емкостей и контейнеров, таких как мусорный бак или ведро, шкаф, сейф, старая микроволновка. Подойдет любой объемный предмет, который имеет непрерывную поверхность без зазоров или больших отверстий. Необходимо наличие плотно облегающей крышки.

Установите непроводящий материал (картон, дерево, бумага, листы пены или пластика) на всех внутренних сторонах клетки Фарадея, чтобы сохранить содержимое от прикосновения металла. Кроме того, можно обернуть каждый элемент в пузырчатую пленку или пластик. Все приборы, которые находятся внутри, должны быть изолированы от всего остального и особенно от металлического контейнера.

Как сделать простой ЭМИ излучатель своими руками!

Клетка Фарадея из мусорного бака

Как сделать простой ЭМИ излучатель своими руками!

Клетка Фарадея из металлического ящика

Что поместить в клетку Фарадея

Поместите внутрь клетки весь электронный и электротехнический арсенал, который входит в НЗ, и те компоненты, которые закуплены «впрок». Так же там необходимо расположить все, что может быть чувствительно к ЭМИ, в случае получения предупредительного сигнала. В том числе:

• Батарейки для радио.
• Портативные рации.
• Портативные телевизоры.
• Светодиодные фонарики.
• Солнечное зарядное устройство.
• Компьютер (ноутбук или планшет).
• Сотовые телефоны и смартфоны.
• Различные лампочки.

• Зарядные шнуры для мобильных телефонов, планшетов и т.п.

Как защитить важную информацию от ЭМИ

Имейте в виду, что электромагнитный импульс может нарушить инфраструктуру на длительное время, а в случае Апокалипсиса – навсегда. Поэтому стоит заранее подготовиться, и произвести резервное копирование важных файлов с помещением их на разных носителях в разные клетки Фарадея.

Вместо послесловия

Если предупреждение об ЭМИ небыло получено, но вы видите яркую вспышку с последующим отключением энергосистем, действуйте по своему усмотрению.

Читайте также:  Моддинг usb - порт на старой клавиатуре своими руками

Ведь нельзя знать заранее, насколько тяжелым и опасным будет электромагнитный импульс, дальность которого при некоторых видах взрывов достигает 1000 км.

Но благодаря подготовке и предварительному планированию можно определить, насколько реально мы сможем выжить в мире после ЭМИ.

Будьте готовы, и будете в безопасности!

Источник: www.extreme-voyage.ru НАША СТРАНИЦА В ФЕЙСБУК: МЫ ВКОНТАКТЕ:

3 Комментариев для Защита электроники от электромагнитного импульса

Источник: http://www.extreme-voyage.ru/2015/07/02/zashhita-elektroniki-ot-elektromagnitnogo-impulsa/

Защита от электромагнитного излучения: основные методы и средства

Электромагнитная энергия – неотъемлемая часть жизни современного человека. К источникам электромагнитного излучения (ЭМИ) следует отнести смартфоны, планшеты, компьютеры и большую часть бытовой техники.

Последствием долгого пребывания в такой среде становится не только головная боль, но и более серьёзные заболевания: опухоли, неправильная работа гормональной системы и некоторые патологические изменения.

Защита от электромагнитной энергии обязательна не только на производстве, но и на улице, на работе и даже дома.

Основные источники электромагнитного излучения

С глобальным развитием цифровой техники источники электромагнитных колебаний окружают нас практически везде. Постоянное ношение мобильного телефона, использование ПК на работе и простая поездка в электромобиле становятся серьёзной биологической опасностью для нашего организма.

Как сделать простой ЭМИ излучатель своими руками!Распространённые источники электромагнитного излучения

Для снижения уровня электромагнитного загрязнения, необходимо узнать основные его источники и постараться меньше контактировать с ними в дальнейшем.

В помещениях

Перечень приборов бытового и промышленного предназначения с наибольшей интенсивностью излучений:

  • Компьютер. Сегодня ПК находится практически в каждой семье, но немногие пользователи знают, что монитором компьютера передаётся электромагнитная энергия, которая в 500 раз превышает норму.
  • Микроволновая печь. По своей вредности стоит на одном уровне с ПК. Во время работы микроволновой печи окружающее пространство наполняется низкочастотными излучениями в радиусе 1.5-2 метров. В пище, приготовленной в микроволновке, резко снижается количество полезных веществ и витаминов.
  • Смартфоны и планшеты. Гаджеты, которые постоянно находится вместе с современным пользователем. ЭМИ сотовых телефонов ненамного ниже излучений ПК – всего в 250 раз превышает допустимую норму.

Даже нахождение в помещение с разветвлённой электрической проводкой приведёт к нежелательному облучению. Каждый провод, пропускающий электрический ток, также становится причиной вредных воздействий.

Как сделать простой ЭМИ излучатель своими руками!Источники ЭМИ в стандартной квартире

На улице

Но не только в помещениях на человека воздействуют электромагнитных волн различных длин и диапазонов. Нежелательное облучение происходит на улице, в торговом центре и даже в общественном транспорте. Приведём несколько примеров:

  • Линии высокого напряжения. Высоковольтные линии прокладывают как в земле, так и по воздуху. Пространство вокруг ЛЭП напряжением 110 кВ, может обладать такой интенсивностью ЭМИ, что на расстоянии 10 м создаст угрозу здоровью человека. Поэтому высоковольтные ЛЭП поднимают на большую высоту или глубоко закапывают в землю.
    Как сделать простой ЭМИ излучатель своими руками!Высоковольтные ЛЭП
  • Высокочастотные передатчики. Например, вышки сотовой связи, которые сейчас установлены практически везде. Или комплексы радиосвязи, установленные в аэропортах. Работая в диапазоне волн от 500 МГц до 15 ГГц, такие электромагнитные устройства постоянно воздействуют на человеческий организм, даже находясь на солидном расстоянии от людей.
  • Спутниковая система. Люди постоянно забывают о линиях спутниковой связи, находящихся на орбите. Сильное излучение таких объектов достигает 200-300 Вт/м2, но при достижении поверхности Земли, луч рассеивается и до людей доходит только малая часть опасного импульса.

Даже поездка в обыкновенном троллейбусе оставит некоторые последствия для самочувствия.

Самым вредным считают посещение метро — по своему негативному воздействию оно в 2 раза превышает пребывание в любой разновидности электротранспорта.

Электрокары также нельзя отнести к абсолютно безопасному, в плане электромагнитного излучения, типу передвижения. Длительное пребывание в электромобиле можно сравнить с несколькими часами работы за компьютером.

Общие правила защиты от ЭМИ

Надеяться на тот факт, что от воздействия ЭМИ ещё никто не умирал, не стоит. Прямое или косвенное электромагнитное излучение создаёт непоправимые изменения в человеческом организме. Поэтому следует минимизировать количество вредных влияний источников ЭМИ и узнать общие правила защиты.

Самый простой способ – резко сократить расстояние до электромагнитного источника. По внешним его габаритам и принципу действия можно судить о степени вредности.

Например, от компьютера достаточно отстраниться на 20-30 см, а от высоковольтной линии передач с большой мощностью излучения следует отбежать на 25-30 метров.

Следует обращать внимание на более мелкие источники: отодвигать смартфон от своей подушки на 10-15 см и полностью отказаться от Bluetooth-гарнитуры.

Существует ещё один вариант минимизации электромагнитного излучения – снизить время пребывания рядом с любыми источниками ЭМИ.

Проводить за экраном монитора не несколько часов, а по 30-40 минут, делая полезные для глаз перерывы. Отказаться от постоянного сёрфинга в интернете и переписки в социальных сетях.

Даже включив простую микроволновую печь, не надо постоянно стоять рядом с ней – лучше заняться другими, более полезными делами.

Выключенный, но подсоединённый к сети бытовой прибор также относится к источнику излучения. На концах шнура действует разница потенциалов, создающая вокруг себя электромагнитное поле.

А если такой прибор не один, а их несколько в небольшой по своим габаритам квартире? Суммарное воздействие маломощных бытовых приборов через несколько лет станет причиной плохого самочувствия, недосыпания и массы других негативных моментов.

Такие простые способы помогут на порядок снизить воздействие источников ЭМИ и уберечь себя от скорых проблем со здоровьем.

Методы и технические решения защиты от излучения

После ознакомления с общепринятыми правилами по защите от опасного воздействия ЭМИ, следует переходить к узконаправленным техническим решениям.

Не всегда простое выключение бытового прибора из розетки приведёт к снижению интенсивности электромагнитного поля в помещении.

Иногда следует приобрести устройства или материалы, способные обеспечить эффективное экранирование от опасного излучения.

В частном доме и квартире

Своя квартира или дом – это место, где большая часть людей проводит много времени. И не важно, это отдых или решение бытовых проблем. Защитить своё жилище от пагубного ЭМИ-излучения – первая задача, которую должен поставить перед собой ответственный хозяин.

Перечень технических процедур и решений, помогающих снизить воздействие ЭМИ:

  1. Покупать новые бытовые приборы со стандартной напряжённостью электрического поля. Если проще, то использовать можно только те устройства, уровень электромагнитного излучения которых не доходит до отметки «минимум». Решение простое и полезное. В выборе подобной бытовой техники помогут многочисленные продавцы-консультанты и сертификаты, предоставленные производителем.
  2. Контролировать уровень влажности в помещении, например, с помощью бытового увлажнителя воздуха. Полезная процедура не только в качестве электромагнитной безопасности, но и как профилактика простудных заболеваний. Увлажнитель не следует использовать в паре с ионизаторами – эффект может быть противоположным.
  3. Приобрести для домашнего компьютера защитное устройство – экран. Экран одевается поверх монитора, полностью обезопасить пользователя он не сможет, но снизить уровень ЭМИ – вполне. Разновидностей защитных экранов большое количество, можно быстро подобрать качественный и недорогой вариант.
    Как сделать простой ЭМИ излучатель своими руками!Защитный экран для монитора
  4. Сделать перестановку приборов с повышенным электромагнитным фоном. Примеры:
  • Микроволновая печь должна находится на расстоянии 1-1.5 м от обеденного стола. Её лучше поставить отдельно от части кухни в которой происходит приготовление пищи, её употребление, и мойка посуды.
  • Телевизор, как прибор с наибольшей электромагнитной радиацией, следует переместить в дальний угол комнаты, на расстояние не менее 2 м от кровати или дивана.
  • Безопасное расстояние для Wi-Fi роутера – 1.5-2 м от людей. Нередко роутер вешают в верхнем углу комнаты.

Отдельно следует остановиться на спальне. Многие хозяева квартир и частных домов покупают электрические одеяла с низкой частотой колебаний при работе. Пользоваться подобными электромагнитными вещами следует как можно реже, устанавливая самый низкий уровень мощности.

Уровни или степень облучения у каждого человека разные, поэтому лучше отставить кровать от того места, где в стене проложена электропроводка. Длительное нахождение рядом с проводом, проложенным в стене, через несколько лет приведёт к ухудшению физического здоровья. Кровать должна находится не менее чем в двух метрах от таких мест.

В офисе и на производстве

Основная проблема любого офиса – большое количество мобильных телефонов и компьютеров. При таком количестве, отдельные электромагнитные волны складываются в общий фон и воздействуют на людей. Результат: слишком быстрая усталость организма, повышенная сонливость, малая производительность.

Первое, что необходимо сделать – защитить себя от воздействия низкочастотных волн экрана компьютера. Надо установить защитный экран, выполненный в виде мелкой металлической сетки. Принцип такого экрана похож на клетку Фарадея – он вбирает в себя вредное электромагнитное излучение, защищая пользователя.

Важно обратить на материал экрана компьютера. Наименее вредные ЖК-дисплеи, после них меньше устают глаза, а электромагнитный уровень в пределах допустимого. Но верить в то, что ЖК-экраны абсолютно безопасны, тоже не стоит.

Кондиционеры, электрические чайники, неоновые лампы, в общем всё, что проводит электрическую энергию, излучает электромагнитные импульсы. От таких источников следует отдалиться не менее чем на 1.5-2 метра.

Несколько способов защиты от ЭМИ на производстве:

  1. Электрические агрегаты, машины и станки промышленных частот являются основным источником электромагнитного излучения. Для защиты персонала следует установить небольшое экранирующее устройство, например, металлический козырёк. Также применяют перегородки, сваренные из прутов небольшого диаметра.
  2. Если экранирование помещения невозможно, следует защитить персонал, работающий там. Специальная одежда защищает всю поверхность тела: голову, ноги, руки и туловище. Даже при воздействии различных диапазонов частот.
  3. При ремонтных работах допускается снижение напряжённости электромагнитного поля, путём отключения некоторых узлов или аппаратов. При этом время на ремонт строго ограничено.

В некоторых сферах производства применяется лазерное излучение, что по своему негативному воздействию очень похоже на ЭМИ. Способы защиты от него практически ничем не отличаются: спецодежда, переносные или стационарные экраны, специальная защитная сетка.

Искусственные источники ЭМИ наносят наибольший вред при постепенном воздействии на протяжении длительного времени. Поэтому контакт с любыми электронными приборами следует минимизировать или полностью исключить.

Пара полезных советов

Чтобы меньше думать о том, как защитить себя от электромагнитной энергии, необходимо прислушаться к нескольким полезным советам:

  • При покупке недвижимости обязательно узнать о местах прокладки высоковольтных линий передач. Не стоит покупать земельный участок там, где проходят воздушные ЛЭП. У многих хозяев таких домов через несколько лет развиваются сильные головные боли, ухудшается самочувствие.
  • Следует сократить своё пребывание в электрифицированном транспорте. Это не только относится к электрокарам, но также к простому трамваю и троллейбусу. Если расстояние небольшое, то его лучше пройти пешком – нет вредного электромагнитного излучения под ногами и для здоровья полезно.

Видео в дополнение темы

Источник: https://www.asutpp.ru/kak-zaschititsya-ot-elektromagnitnogo-izlucheniya.html

Как сделать простой ЭМИ излучатель своими руками!

ЭМИ (электромагнитный импульс) довольно популярны в мире научной фантастики. Было бы здорово иметь свою собственную установку для ЭМИ пушки? Так и подумал, перед тем, как начал сборку электромагнитного излучателя своими руками.

Я хотел сделать ЭМИ генератор, который был бы портативным, и его можно было бы спрятать под рукавами. Если у вас есть правильные компоненты, вы можете собрать её в кратчайшие сроки.

ВНИМАНИЕ: Этот проект не для детей.

Если говорить серьезно, вы можете получишь шок. Конденсаторы действительно мощные и поэтому, пожалуйста, будьте осторожны при обращении со схемой.

Я не несу никакой ответственности, если вы что-то уничтожаете этим оружием.

Шаг 1: Абсолютно необходимые вещи

Схема старой камеры, независимо от того, является ли она одноразовой или нет, абсолютно необходима. Если у вас её нет, то её не так сложно сделать, но это займет много времени. Альтернативный способ — использовать схему с замком или отдельно продаваемую вспышку камеры.

Читайте также:  Оригинальный подсвечник своими руками

Я использовал схему камеры 15-летней давности. Просто вынул её из корпуса. Схема работает от 3В аккумуляторной системы.

Причина, по которой я использовал обычную схему камеры вместо схем одноразовых камер, заключается в том, что конденсатор в обычной камере намного мощнее, чем в одноразовых. Если вы используете схему отдельной вспышки, она также намного мощнее, чем схемы обычных камер.

Пожалуйста, будьте осторожны при извлечении цепи. Конденсатор все еще может хранить заряд.

Шаг 2: Катушка

Я должен был сделать катушку, которая не занимает много места, потому что она будет фиксироваться в ладони. Если катушка будет слишком большая, я могу поучить шок только за счёт легкого движения ладони.

Итак, я вынул катушку из старой схемы SMPS. У меня были дополнительные медные провода. Поэтому я использовал их, чтобы сделать катушку более мощной.

Убедитесь, что обмотка медного провода тугая, иначе она будет неэффективной.

Шаг 3: Начинаем сборку, делаем каркас

Надо как-то зафиксировать катушку на уровне ладони. Также нужно быть уверенным в правильной изоляции, чтобы избежать ударов током.

Чтобы обеспечить изоляцию, я использовал металлическую полосу и толстый картон. После этого я нашел антенну рации, которую закрепил на ладони с помощью ленты.

Смысл крепления антенны — позволить ладони свободно двигаться. Она должна быть гибкой, чтобы вы могли правильно согнуть руку.

Шаг 4: Добавляем жизненно важные элементы

Теперь, когда каркас готов, мы должны прикрепить к нему самую важную часть — схему камеры. Чтобы прикрепить схему, я снова использовал картон. Также обратите внимание, что я не снял часть оболочки антенны — это позволит мне поворачивать ладонь вокруг запястья. Я прикрепил схему к этой черной изоляции.

Шаг 5: Дорабатываем каркас

Вся конструкция должна быть построена так, чтобы она оставалась на руке. Ранее мы прикрепили металлическую полосу, чтобы катушка оставалась на ладони. Теперь нам нужно прикрепить еще одну металлическую полоску, чтобы концевая часть оставалась неподвижной на предплечье.

Чтобы это стало возможным, я использовал увеличительное стекло.

Шаг 6: Источник энергии

Прикрепите держатель батарейки АА к цепи. Сначала выясните, где в цепи ранее находились точки, к которым были подключены провода от батареи. Припаяйте провода правильно.

Шаг 7: Подключаем катушку

Сначала правильно соедините провода с катушкой. Вы можете припаять их. Один провод должен быть прикреплен в начале катушки, другой провод — в конце катушки.

Эти два провода должны быть спаяны с двумя электродами конденсатора в цепи. Не забудьте прикрепить выключатель — это важно.

Шаг 8: Завершение

Чтобы прикрепить катушку к ладони, я использовал желтую изоленту. Держатель батареи крепится к предплечью с помощью ленты.

  • Теперь пришло время что-нибудь разрушить!
  • Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.
  • источник: masterclub.online

цифровая электроника вычислительная техника встраиваемые системы

Как сделать генератор электромагнитных импульсов своими руками

Вас достала слишком громкая музыка соседей или просто хотите сделать какой-нибудь интересный электротехнический прибор самостоятельно? Тогда можете попробовать собрать простой и компактный генератор электромагнитных импульсов, который способен выводить из строя электронные устройства поблизости.

Генератор ЭМИ, представляет собой устройство, способное генерировать кратковременное электромагнитное возмущение, которое излучается наружу от своего эпицентра, нарушая при этом работу электронных приборов. Некоторые всплески ЭМИ встречаются в природе, например, в виде электростатического разряда. Также существуют искусственные всплески ЭМИ, к таким можно отнести ядерный электромагнитный импульс.

В данном материале будет показано, как собрать элементарный генератор ЭМИ, используя обычно доступные элементы: паяльник, припой, одноразовый фотоаппарат, кнопка-переключатель, изолированный толстый медный кабель, проволока с эмалированным покрытием, и сильноточный фиксируемый переключатель. Представленный генератор будет не слишком сильным по мощности, поэтому у него может не получиться вывести из строя серьезную технику, но на простые электроприборы он повлиять в состоянии, поэтому данный проект следует рассматривать как учебный для новичков в электротехнике.

Итак, во-первых, нужно взять одноразовый фотоаппарат, например, Kodak. Далее нужно вскрыть его. Откройте корпус и найдите большой электролитический конденсатор. Делайте это в резиновых диэлектрических перчатках, чтобы не получить удар током при разряде конденсатора. При полной зарядке на нем может быть до 330 В.

Проверьте вольтметром напряжение на нем. Если заряд еще имеется, то снимите его, замкнув выводы конденсатора отверткой. Будьте осторожны, при замыкании появится вспышка с характерным хлопком. Разрядив конденсатор, вытащите печатную плату, на которой он установлен, и найдите маленькую кнопку включения/выключения.

Отпаяйте ее, а на ее место запаяйте свою кнопку-переключатель.

Припаяйте два изолированных медных кабеля к двум контактам конденсатора. Один конец этого кабеля подключите к сильноточному переключателю. Другой конец оставьте пока свободным.

Теперь нужно намотать нагрузочную катушку. Оберните проволоку с эмаль-покрытием от 7 до 15 раз вокруг круглого объекта диаметром 5 сантиметров.

Сформировав катушку, оберните ее клейкой лентой для большей безопасности при ее эксплуатации, но оставьте два выступающих провода для подключения к клеммам.

Используйте наждачную бумагу или острое лезвие, чтобы удалить эмалевое покрытие с концов проволоки. Один конец соедините с выводом конденсатора, а другой с сильноточным переключателем.

Теперь можно сказать, что простейший генератор электромагнитных импульсов готов. Чтобы зарядить его, просто подключите батарею к соответствующим контактам на печатной плате с конденсатором. Поднесите к катушке какое-нибудь портативное электронное устройство, которое не жалко, и нажмите переключатель.

Помните, что не стоит удерживать нажатой кнопку заряда при генерации ЭМИ, иначе вы можете повредить цепь.

источник: digitrode.ru

(12

Источник: https://good-health4you.ru/stati/kak-sdelat-prostoj-emi-izluchatel-svoimi-rukami.html

Электромагнитная бомба, схема и принцип действия фантастического оружия, поражающие ЭМИ импульсы электронной бомбы, способы защиты

29.04.2019

Научно-технический прогресс стремительно развивается. К сожалению, его результаты проводят не только к улучшению нашей жизни, к новым удивительным открытиям или победам над опасными недугами, но и к появлению нового, более совершенного оружия.

На протяжении всего прошлого столетия человечество «ломало голову» над созданием новых, еще более эффективных средств уничтожения. Отравляющие газы, смертоносные бактерии и вирусы, межконтинентальные ракеты, термоядерное оружие. Не бывало еще такого периода в человеческой истории, чтобы ученые и военные сотрудничали так тесно и, к сожалению, эффективно.

Во многих странах мира активно проводятся разработки оружия на основе новых физических принципов. Генералы весьма внимательно наблюдают за последними достижениями науки и стараются поставить их себе на службу.

Одним из наиболее перспективных направлений оборонных исследований являются работы в области создания электромагнитного оружия. В желтой прессе оно обычно называется «электромагнитная бомба». Подобные исследования стоят весьма недешево, поэтому позволить их себе могут только богатые страны: США, Китай, Россия, Израиль.

Принцип действия электромагнитной бомбы заключается в создании мощного электромагнитного поля, что выводит из строя все устройства, работа которых связана с электричеством.

Это не единственный способ использования электромагнитных волн в современном военном деле: созданы передвижные генераторы электромагнитного излучения (ЭМИ), которые могут вывести из строя электронику противника на расстоянии до нескольких десятков километров. Работы в этой области активно проводятся в США, России, Израиле.

Существуют и еще более экзотические способы военного применения электромагнитного излучения, чем электромагнитная бомба. Большая часть современного оружия использует энергию пороховых газов для поражения противника. Однако все может измениться уже в ближайшие десятилетия. Для запуска снаряда также будут использованы электромагнитные токи.

Принцип действия такой «электрической пушки» довольно прост: снаряд, сделанный из проводящего материала, под воздействием поля выталкивается с большой скоростью на довольно большое расстояние. Эту схему планируют применять на практике уже в ближайшее время. Наиболее активно в этом направлении работают американцы, об успешных разработках оружия с таким принципом действия в России неизвестно.

Электромагнитная бомба

Как вы представляете себе начало Третьей мировой войны? Ослепительные вспышки термоядерных зарядов? Стоны людей, умирающих от сибирской язвы? Удары гиперзвуковых летательных аппаратов из космоса?

Все может быть совсем по-другому.

Вспышка действительно будет, но не очень сильная и не испепеляющая, а похожая, скорее, на раскат грома. Самое «интересное» начнется потом.

Загорятся даже выключенные люминесцентные лампы и экраны телевизоров, в воздухе повиснет запах озона, а проводка и электрические приборы начнут тлеть и искриться. Гаджеты и бытовые приборы, в которых есть аккумуляторы, нагреются и выйдут из строя.

Перестанут работать практически все двигатели внутреннего сгорания. Отключится связь, не будут работать средства массовой информации, города погрузятся во тьму.

Люди не пострадают, в этом отношении электромагнитная бомба – очень гуманный вид оружия. Однако подумайте сами, во что превратится жизнь современного человека, если убрать из него устройства, принцип действия которых основан на электричестве.

Общество, против которого будет применено орудие подобного действия, окажется отброшенным на несколько веков назад.

Как это работает

Как можно создать столь мощное электромагнитное поле, которое способно оказывать подобное действие на электронику и электрические сети? Электронная бомба фантастическое оружие или подобный боеприпас можно создать на практике?

Электронная бомба уже была создана и уже два раза применялась. Речь идет о ядерном или термоядерном оружии. При подрыве подобного заряда одним из поражающих факторов является поток электромагнитного излучения.

В 1958 году американцы взорвали над Тихим океаном термоядерную бомбу, что привело к нарушению связи во всем регионе, ее не было даже в Австралии, а на Гавайских островах пропал свет.

Гамма-излучение, которое в избытке образуется при ядерном взрыве, вызывает сильнейший электронный импульс, что распространяется на сотни километров и выключает все электронные приборы. Сразу после изобретения ядерного оружия, военные занялись разработкой защиты собственной аппаратуры от подобного действия взрывов.

Работы, связанные с созданием сильного электромагнитного импульса, как и разработки средств защиты от него проводятся во многих странах (США, Россия, Израиль, Китай), но почти везде они засекречены.

Можно ли создать работающее устройство, на других менее разрушительных принципах действия, чем ядерный взрыв. Оказывается, что можно. Более того, подобными разработками активно занимались в СССР (продолжают и в России). Одним из первых, кто заинтересовался данным направлением, был знаменитый академик Сахаров.

Именно он первым предложил конструкцию конвенционного электромагнитного боеприпаса. По его задумке высокоэнергетическое магнитное поле можно получить путем сжатия магнитного поля соленоида обычным взрывчатым веществом. Подобное устройство можно было поместить в ракету, снаряд или бомбу и отправить на объект неприятеля.

Однако у подобных боеприпасов есть один недостаток: их малая мощность. Преимуществом подобных снарядов и бомб является их простота и низкая стоимость.

Можно ли защититься?

После первых испытаний ядерного оружия и определения электромагнитного излучения, как одного из его основных поражающих факторов, в СССР и США начали работать над защитой от ЭМИ.

К этому вопросу в СССР подходили очень серьезно. Советская армия готовилась воевать в условиях ядерной войны, поэтому вся боевая техника изготавливалась с учетом возможного воздействия на нее электромагнитных импульсов. Сказать, что защиты от него нет совсем – это явное преувеличение.

Вся военная электроника оборудовалась специальными экранами и надежно заземлялась. В ее состав включались специальные предохранительные устройства, разрабатывалась архитектура электроники максимально устойчивая к ЭМИ.

Конечно, если попасть в эпицентр применения электромагнитной бомбы большой мощности, то защита будет пробита, но на определенном расстоянии от эпицентра, вероятность поражения будет существенно ниже. Электромагнитные волны распространяются во все стороны (как волны на воде) поэтому их сила убывает пропорционально квадрату расстояния.

Кроме защиты, разрабатывались и средства радиоэлектронного поражения. С помощью ЭМИ планировали сбивать крылатые ракеты, есть информация об успешном применении этого метода.

Читайте также:  Мейсель своими руками. токарный резец из напильника

В настоящее время разрабатывают передвижные комплексы, что могут испускать ЭМИ высокой плотности, нарушая работу вражеской электроники на земле и сбивая летательные аппараты.

Видео об электромагнитной бомбе

Если у вас возникли вопросы — оставляйте их в х под статьей. Мы или наши посетители с радостью ответим на них

Источник: https://MilitaryArms.ru/boepripasy/bomby/elektromagnitnaya/

Умри все неживое… или как уничтожить электронику

Известно, что мощные электромагнитные воздействия представляют опасность для радиоэлектронной аппаратуры. Чем сложнее оборудование, тем выше вероятность возникновения в нем функциональных нарушений.

Когда амплитуды токовых импульсов, наведенные внешним излучением в замкнутых контурах аппаратуры, достигают сотен ампер, происходит пробой и разрушение полупроводниковых элементов, выгорание схем, а в некоторых случаях подрыв боевой части (БЧ) боеприпаса (БП).

Даже в хорошо экранированном изделии каждый проводник, который ведет внутрь блока, подобен антенне и может стать источником поражения аппаратуры. 

Несмотря на то что стальные корпуса современной бронетехники, казалось бы, достаточно хорошо защищают приборное оборудование от внешних электромагнитных воздействий, все равно могут быть поражены отдельные системы боевой бронированной машины (ББМ), которые по своему функциональному назначению высокочувствительны к таким воздействиям, кроме того, из защита проблематична в принципе.

В зависимости от уровня электромагнитного воздействия в ББМ может быть нарушена работа систем связи, аппаратуры «свой -чужой», телевизионных и оптико-электронных приборов наблюдения, приборов химической и радиационной разведки, сенсоров систем защиты, затворов противоатомной защиты, приводов выносного вооружения, датчика ветра, электрооборудования двигателя и фильтровентиляционной установки и др.

Впервые проблема электромагнитной защиты встала, когда было зарегистрировано действие одиночного электромагнитного импульса (ЭМИ), возникший при атомном взрыве. С 1970-х годов ведутся работы по созданию систем вооружения на основе направленного действия электромагнитного излучения. 

К достоинствам систем электромагнитного воздействия можно отнести: 

  • расширение круга решаемых задач, в том числе выведение из строя радиоэлектронных средств (РЭС), не излучающих в пространство, а также электронных компонентов и узлов, входящих в различные системы управления;
  • эффективное воздействие на РЭС, обладающие высокой помехозащищенностью; 
  • снижение в ряде случаев требований к качеству необходимой развединформации (по местоположению, частотному диапозону, параметрам сигналов);
  • отсутствие разрушительных последствий для окружающей среды и сохранение жизни личного состава.

На основе анализа открытых сведений можно сделать вывод, что существуют два главных направления создания средств функционального поражения: одно — на основе генераторов излучения, аналогичного ЭМИ, возникающему при ядерном взрыве; второе — на основе релятивистских генераторов сверхвысокочастотного излучения. 

Перед средствами функционального поражения стоит общая задача вывести из строя РЭС ББМ, но существенно различаются структуры формируемых полей и механизмы действия последних на поражаемые объекты.

С точки зрения структуры полей, указанные различия в первую очередь обусловлены их спектральными характеристиками: одиночный ЭМИ не имеет высокочастотного заполнения, его спектр в основном сосредоточен в области достаточно низких частот 1 — 100 МГц. Направленная канализация низкочастотного ЭМИ на объект поражения в пространстве проблематична, а для сверхвысокоточных излучений такая канализация реализуется как обычными антенными системами (рупорной, зеркальной, фазированной антенной решеткой), так и радиопрозрачными линзами.

Кроме того, поражающее действие низкочастотного ЭМИ на объекты связано главным образом с проникновением полей через технологические отверстия и щели в корпусах аппаратуры, а также с наводками, возникающими на корпусах, проводах и разъемах.

СВЧ импульсы генерируются на определенной несущей частоте, представляют собой радиоимпулсы, и их частота может быть любой в пределах всего радиочастотного диапозона (от единиц до сотен гигагерц).

СВЧ излучение отличается не только пространственной направленностью, но и частотно избирательным воздействием, что существенно повышает его эффективность при прохождении через входные приемные тракты РЭС.

Рассмотрим оба направления подробнее. 

Первое направление базируется на опыте ядерных испытаний, которые показали, что предельно короткий (сотни наносекунд) ЭМИ взрыва способен навести индукционные токи в любом проводнике, включая токоподводы и дорожки печатных плат электронной аппаратуры, причем величина этих токов может быть достаточна для электропробоя и выгорания схем. Особенно подвержена действию импульса современная вычислительная техника, построенная на полупроводниковых элементах высокой плотности. Любой, даже незначительный пробой может оказаться еще более разрушительным за счет энергии собственного источника питания.  

Существуют два основных способа создания мощного сверхширокополосного ЭМИ.

Первый способ — использование взрывных генераторов, имитирующих в ограниченных масштабах импульс ядерного взрыва. По характеру воздействия импульсное электромагнитное поле близко к разряду молнии длительностью 100 — 180 нс и импульсной мощностью до 40 МВт.

Техническая основа создания взрывных генераторов ЭМИ достаточно разнообразна. В современных условиях особый интерес, безусловно представляют неядерные источник ЭМИ, которые могут быть скомпонованы в противотанковых БП.

Генераторы со сжатием потока при помощи взрывчатки (explosively pumped Flux Compression Generators), или FC-генераторы — устройства одноразового действия, работающие на химических ВВ. Основу наиболее проработанного коасксиального генератора ЭМИ составляет медная труба, заполненная однородным высокоэнергетическим ВВ. Она представляет собой якорь, вокруг которого с зазором установлен статор — секционированная низко-омная обмотка, которая, в свою очередь, смонтирована в прочной трубе из диэлектрика, часто из стеклокомпозита. Стартовый токовый импульс обеспечивается конденсаторным блоком либо FC-генератором малой мощности. ВВ инициируется в момент, когда стартовый ток достигает пикового значения, причем взрыватель размещен так, что фронт инициирования распространяется по ВВ вдоль трубы-якоря, деформируя его конус. Там, где якорь доходит до статора, происходит короткое замыкание между полюсами статорной обмотки. Распространяющееся вдоль трубы короткое замыкание создает эффект сжатия магнитного поля: генератор производит импульс нарастающего тока, пиковое значение которого достигается перед окончательным разрушением конструкции.  Время нарастания тока составляет сотни микросекунд при пиковых токах замыкания в десятки мегаампер и пиковой мощности поля в десятки МВт. Еще в 1970-е годы в Лос-Аламосской национальной лаборатории был достигнут коэффициент усиления FC-генератора (отношение выходного тока к стартовому) равный 60, что обеспечивало создание многокаскадного сверхмощного устройства. Проблема его компановки в БП упрощается коаксиальной конструкцией. 

Хотя сами FC-генераторы являются потенциальной технологической базой для генерации мощных электрических импульсов, их выходная частота, вследствие физики процесса, не превышает 1 МГц. При таких частотах многие цели будет трудно атаковать даже с с очень высокими уровнями энергии, более того, фокусировка энергии от таких устройств будет проблематичной. 

Магнитно-гидродинамические генераторы (explosive or propellant driven Magneto-Hydrodynamic generators), или MH-генераторы, также построены на использовании ВВ.

 В проводнике, двигающемся в магнитном поле, создается электрический ток в направлении, перпендикулярном направлению поля и вектору движения проводника. В качестве проводника, используется струя плазмы от направленного взрыва порохового заряда или иного ВВ, которая движется поперек магнитного поля.

 Ток снимается электродами, имеющими контакт с плазменной струей. В магнитно — гидродинамическом генераторе может  использоваться твердое ракетное топливо с легкоионизирующимися добавками на основе калия или цезия. Детально исследованы процессы, которые имеют место в этих генераторах.

 Разработаны промышленные образцы изделий. Накопленный технический задел позволяет считать, что при решении компоновочных задач БП может быть реализован на основе магнитно-гидродинамического генератора. 

Второй способ генерации ЭМИ 

Использование микроволновых устройств одноразового действия, например осциляторов с виртуальным катодом — виркаторов (Vircators) и искровых разрядников (Spark-Gap), то есть электрических источников, которые способны произвести очень мощный одиночный высокочастотный импульс энергии. В основу их работы заложено явление формирования пространственного заряда, осцилирующего с частотами микроволнового диапазона. Микроволновая полость, в которой он находится, обеспечивает настройку по частоте и высокую импульсную мощность. В качестве первичного источника  энергии для такого блока можно использовать мощный FC-генератор. 

По заказу DARPA в США начата программа разработки БП на основе генераторов ЭМИ. Согласно доступным источникам, успешно проведены опыты по дистанционному направленному воздействию на РЭС беспилотных летательных аппаратов и авиации.

Другим направлением разработки средств электромагнитного воздействия стали релятивистские генераторы СВЧ излучения, излучающие сверхвысокочастотное излучение. 

Генерация с их помощью радиоимпульсов длительностью от единиц до десятков наносекунд оказывается более эффективной по критерию функционального поражения РЭС по следующим причинам: 

— увеличение пиковой мощности импульса приводит к возрастанию наведенных токов и резко сокращает время теплового поражения полупроводниковых переходов микросхем;

— легче сформировать режим вывода излучения из генератора и его распространения в пространстве без пробоя воздуха;

— создается возможность преодоления систем защиты входных трактов РЭС, имеющих достаточно большую инерционность срабатывания, в связи с тем, что сверхвысокочастное излучение обладает пространственной направленностью и частотно-избирательным воздействием.

Важным отличием релятивистских генераторов является возможность многоразового использования — они не разрушаются после формирования импульса. Среди подобного оборудования — линейные индукционные ускорители электронов, релятивистские СВЧ генераторы с виртуальным катодом, релятивистские магнетроны, релятивистские СВЧ приборы со сверхразмерными электродинамическими структурами.

В настоящее время все перечисленные излучатели доведены до лабораторных образцов. Получены результаты, подтверждающие их эффективность, но говорить об их практическом применении пока рано, поэтому нецелесообразно приводить их технические особенности.

Поражаемые электромагнитным оружием ракеты и высокоточные боеприпасы

Электромагнитное оружие применяется для поражения ракет в комплексе активной защиты «Афганит» из танковой платформы Армата и боевом ЭМИ-генераторе Ранец-Е. 

Использование электромагнитного импульса против электроники ракеты за ее металлическим корпусом малоэффективно, но возможно активное воздействие на головку самонаведения. Воздействие особенно велико для ракет с собственным радаром.

К ЭМИ оружию уязвимы ракеты с конструктивными элементами следующего вида:

  • Противорадиолокационные ракеты с собственными радарами поиска РЛС
  • планирущие боеприпасы с собственными радарами (SADARM)
  • высокоточные бомбы с простыми приемниками GPS-навигации
  • ракеты с управлением по радиоканалу (TOW Aero, Хризантема)
  • ракеты с собственными активными радарами поиска бронетехники (Brimstone, JAGM, AGM-114L Longbow Hellfire)
  • ПТРК 2го поколения с управлением по не экранированному проводу (TOW или Фагот)

Существует несколько эффективных средств защиты радаров и электроники от ЭМИ-оружия:

  1. блокирование входа части энергии электромагнитного импульса;

  2. подавление индукционных токов внутри электрических схем быстрым их размыканием;

  3. использование электронных устройств нечувствительных к ЭМИ.

Как средства защиты от ЭМИ на АФАР радары накладывают «клетки Фарадея» отсекающей ЭМИ за пределами их частот. Для внутренней электроники применяются просто железные экраны.

  • Кроме этого может быть использован «разрядник», как средство сброса энергии сразу за антенной.
  • Для размыкания цепей внутренней электроники при возникновении сильных индукционных токов от от ЭМИ используют стабилитроны — полупроводниковые диоды рассчитанные на работу в режиме пробоя с резким повышением сопротивления
  • варисторы резко увеличивающие сопротивление при возникновении индукционного тока
  • Часть электронных устройств неуязвимы для ЭМИ и применяются как средства борьбы с ним:
  • Использование оптического кабеля с передачей сигналом лазером как можно скорее по схеме электроники от части устройств потенциально подверженных ЭМИ

Использование LTCC-технологий в связи с тем, что разогревом силикатной платы с проводниками внутри до 1000С от индукционных токов или как-то иначе такое устройство невозможно повредить, т.к. собственно в ходе такого «совместного обжига» LTCC-панель и была получена технологически Правда следует иметь в виду, что это касается защиты от экстремального нагрева только антенн и проводников, реализованных в виде «дорожек на стеклянной печатной плате», которую из себя представляет LTCC-панель. Напаянные на панель чипы должны иметь защиту корпуса из металла и разрядники, стабилитроны и варисторы на входе сигнала от антенн.

На основе анализа успехов в создании противотанковых электромагнитных устройств можно сделать вывод о том, что в ближайшей перспективе на вооружение могут поступить ПТС группового поражения бронетехники, построенные по принципу формирования одиночного ЭМИ. В дальнейшей перспективе можно ожидать, что на вооружение поступят более эффективные и опасные устройства на основе релятивистских генераторов СВЧ излучения, развивающие мощность, достаточную для вывода из строя бронетехники и ее систем.

Создание подобных средств и защиты от них приведет к появлению новых эффективных форм и методов радиоэлектронной борьбы. Это подтверждается мнением зарубежных экспертов, которые уверенно относят работы по созданию сверхвысокочастотных генераторов к ключевым технологиям, определяющим уровень развития перспективного вооружения. 

В статье использованы материалы книги «Современные противотанковые средства», издательство «Реноме», 2016 г. 

Источник: https://technowars.defence.ru/article/10092/

Ссылка на основную публикацию
Adblock
detector